Table of contents

First Order Logic

Motivation

Syntax

Semantics

Interpretations
Variable maps
Definition of truth

Terminology

Free and bound variables Open and Closed Formulae

Literature

(Albert-Ludwigs-Universität Freiburg)

1 / 13

Syntax

- ightharpoonup variable symbols: x, y, z, ...
- ▶ n-ary function symbols: $f(\cdots), g(\cdots), \ldots$
- ightharpoonup constant symbols: a, b, c, ...
- ▶ n-ary predicate symbols: $P(\cdots), Q(\cdots), \ldots$

Terms

 $t \longrightarrow x$ variable $f(t_1, \dots, t_n)$ function application a constant

Syntax

Formulae

 $\varphi \longrightarrow P(t_1, \dots, t_n)$ atomic formula $| \dots |$ propositional connectives $| \forall x(\varphi') |$ universal quantification $\exists x(\varphi') |$ existential quantification

ground term, etc.: term, etc. without variable occurrences

Why First-Order Logic (FOL)?

- ► In propositional logic, the only building blocks are atomic propositions.
- ▶ We cannot talk about the internal structures of these propositions.
- Example:
 - All CS students know formal logic
 - Peter is a CS student
 - ► Therefore, Peter knows formal logic
 - Not possible in propositional logic
- ► Idea: We introduce predicates, functions, object variables and quantifiers.

(Albert-Ludwigs-Universität Freiburg)

Classical Logic

October 22, 2004 2

Semantics

Semantics: Idea

- ▶ In FOL, the universe of discourse consists of objects, functions over these objects, and relations over these objects.
- ► Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- ▶ Notation: Instead of $\mathcal{I}(x)$ we write $x^{\mathcal{I}}$.
- Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)
- Satisfiability and validity is then considered wrt all these universes.

(Albert-Ludwigs-Universität Freiburg) Classical Logic October 22, 2004 3/13 (Albert-Ludwigs-Universität Freiburg) Classical Logic October 22, 2004 4/13

Formal Semantics: Interpretations

Interpretations: $\mathcal{I} = \langle \mathcal{D}, \mathcal{I} \rangle$ with \mathcal{D} being an arbitrary non-empty set and \mathcal{I} being a function which maps

- ▶ *n*-ary function symbols f to n-ary functions $f^{\mathcal{I}} \in [\mathcal{D}^n \to \mathcal{D}]$,
- ightharpoonup constant symbols a to objects $a^{\mathcal{I}} \in \mathcal{D}$, and
- ightharpoonup n-ary predicates P to n-ary relations $P^{\mathcal{I}} \subseteq \mathcal{D}^n$.

Interpretation of ground terms:

$$(f(t_1,\ldots,t_n))^{\mathcal{I}} = f^{\mathcal{I}}(t_1^{\mathcal{I}},\ldots,t_n^{\mathcal{I}}) \in \mathcal{D})$$

Truth of ground atoms:

$$\mathcal{I} \models P(t_1, \dots, t_n) \text{ iff } \langle t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}} \rangle \in P^{\mathcal{I}}$$

(Albert-Ludwigs-Universität Freiburg)

Classical Logic

October 22, 2004

Semantics Variable maps

Formal Semantics: Variable Maps

V is the set of variables. Function $\alpha \colon V \to \mathcal{D}$ is a variable map. Notation: $\alpha[x/d]$ is identical to α except for x where $\alpha[x/d](x) = d$. Interpretation of terms under \mathcal{I}, α :

$$x^{\mathcal{I},\alpha} = \alpha(x)$$

$$a^{\mathcal{I},\alpha} = a^{\mathcal{I}}$$

$$(f(t_1, \dots, t_n))^{\mathcal{I},\alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I},\alpha}, \dots, t_n^{\mathcal{I},\alpha})$$

Truth of atomic formulae:

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_n) \text{ iff } \langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$$

Example (cont.):

$$\alpha = \{x \mapsto d_1, y \mapsto d_2\}$$
 $\mathcal{I}, \alpha \models \operatorname{red}(x)$ $\mathcal{I}, \alpha[y/d_1] \models \operatorname{eye}(y)$

Examples

(Albert-Ludwigs-Universität Freiburg)

Classical Logic

October 22, 2004 6 / 13

Semantics

Definition of truth

Formal Semantics: Truth

Truth of φ by \mathcal{I} under α ($\mathcal{I}, \alpha \models \varphi$) is defined as follows.

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$$

$$\mathcal{I}, \alpha \models \neg \varphi \quad \text{iff} \quad \mathcal{I}, \alpha \not\models \varphi$$

$$\mathcal{I}, \alpha \models \varphi \land \psi \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I}, \alpha \models \varphi \lor \psi \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I}, \alpha \models \varphi \to \psi \quad \text{iff} \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi, \text{ then } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I}, \alpha \models \varphi \leftrightarrow \psi \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi, \text{ iff } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I}, \alpha \models \forall x \varphi \quad \text{iff} \quad \mathcal{I}, \alpha[x/d] \models \varphi \text{ for all } d \in \mathcal{D}$$

$$\mathcal{I}, \alpha \models \exists x \varphi \quad \text{iff} \quad \mathcal{I}, \alpha[x/d] \models \varphi \text{ for some } d \in \mathcal{D}$$

Examples

		$\{ eve(a), eve(b) \}$	Questions:
Θ	=	$\left\{\begin{array}{l} eye(a), eye(b) \\ \forall x (eye(x) \to red(x)) \end{array}\right\}$	$\mathcal{I}, \alpha \models eye(b) \lor \neg eye(b)$? Yes
\mathcal{D}	=	$\{d_1, \dots, d_n, \} \ n > 1$	$\mathcal{I}, \alpha \models eye(x) \rightarrow$
-			$eye(x) \lor eye(y)$? Yes
a	=	d_1	$\mathcal{I}, \alpha \models eye(x) \rightarrow eye(y)$? No
$\mathrm{b}^{\mathcal{I}}$	=	d_1	
_		-	$\mathcal{I}, \alpha \models eye(a) \land eye(b)$? Yes
$eye^{\mathcal{I}}$	=	$\{d_1\}$	$\mathcal{I}, \alpha \models \forall x (eye(x) \to red(x))$?
$red^\mathcal{I}$	=	\mathcal{D}	Yes
α	=	$\{(x\mapsto d_1),(y\mapsto d_2)\}$	$\mathcal{I}, \alpha \models \Theta$? Yes

(Albert-Ludwigs-Universität Freiburg)

Classical Logic

October 22, 2004

9 / 13

Free and bound variables

Free and Bound Variables

Variables can be free or bound (by a quantifier) in a formula:

$$\begin{array}{rcl} & \operatorname{free}(x) & = & \{x\} \\ & \operatorname{free}(f(t_1,\ldots,t_n)) & = & \operatorname{free}(t_1) \cup \ldots \cup \operatorname{free}(t_n) \\ & \operatorname{free}(P(t_1,\ldots,t_n)) & = & \operatorname{free}(t_1) \cup \ldots \cup \operatorname{free}(t_n) \\ & \operatorname{free}(\neg\varphi) & = & \operatorname{free}(\varphi) \\ & \operatorname{free}(\varphi * \psi) & = & \operatorname{free}(\varphi) \cup \operatorname{free}(\psi) * = \vee, \wedge, \rightarrow, \leftrightarrow \\ & \operatorname{free}(\Xi x \varphi) & = & \operatorname{free}(\varphi) - \{x\} \; \Xi = \forall, \exists \end{array}$$

Example: $\forall x \ (R(y,z) \land \exists y \ (\neg P(y,x) \lor R(y,z)))$ Framed occurrences are free, all others are bound.

Terminology

 \mathcal{I}, α is a model of φ iff

$$\mathcal{I}, \alpha \models \varphi.$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid. Two formulae φ and ψ are logically equivalent ($\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$\mathcal{I}, \alpha \models \varphi \text{ iff } \mathcal{I}, \alpha \models \psi.$$

Note: $P(x) \not\equiv P(y)!$

Logical Implication is also similar to propositional logic:

$$\Theta \models \varphi$$
 iff for all \mathcal{I}, α s.t. $\mathcal{I}, \alpha \models \Theta$ also $\mathcal{I}, \alpha \models \varphi$.

(Albert-Ludwigs-Universität Freiburg)

Classical Logic

October 22, 2004

10 / 13

Terminology

Open and Closed Formulae

Open & Closed Formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of \forall and \exists).
- ▶ Note that *logical equivalence*, satisfiability, and entailment are independent from variable maps if we consider only closed formulae.
- ▶ For closed formulae, we omit α in connection with \models :

$$\mathcal{I} \models \varphi$$
.

(Albert-Ludwigs-Universität Freiburg) Classical Logic October 22, 2004

Literature

Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 & 9).

Volker Sperschneider and Grigorios Antoniou. Logic – A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1991 (Chapters 1–3).

H.-P. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.

U. Schöning. Logik für Informatiker. Spektrum-Verlag.

Classical Logic

October 22, 2004 13 / 13

