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Why First-Order Logic (FOL)?

Classical
Logic

@ In propositional logic, the only building blocks are
atomic propositions.

@ We cannot talk about the internal structures of these
propositions.
@ Example:

e All CS students know formal logic
o Peter is a CS student

e Therefore, Peter knows formal logic
@ Not possible in propositional logic

@ Idea: We introduce predicates, functions, object
variables and quantifiers.

Motivation
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@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax
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| f(t1,...,t,) function application

| a constant
Formulae ¢ — P(t1,...,t,)atomic formula

| ... propositional connectives

| Vaz(¢) universal quantification

| Fz(¢) existential quantification

ground term, etc.: term, etc. without variable occurrences



Semantics: Ildea

Classical
Logic

@ In FOL, the universe of discourse consists of objects,
functions over these objects, and relations over these
objects.

@ Function symbols are mapped to functions, predicate
symbols are mapped to relations, and terms to objects. Semantics



Semantics: Ildea

Classical
Logic

@ In FOL, the universe of discourse consists of objects,
functions over these objects, and relations over these
objects.

@ Function symbols are mapped to functions, predicate
symbols are mapped to relations, and terms to objects. Semantics
@ Notation: Instead of Z(z) we write z%.

@ Note: Usually one considers all possible non-empty
universes. (However, sometimes the interpretations are
restricted to particular domains, e.g. integers or real
numbers.)

@ Satisfiability and validity is then considered wrt all these
universes.
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Formal Semantics: Interpretations

Classical

Interpretations: Z = (D, -T) with D being an arbitrary Logic
non-empty set and Z being a function which maps

@ n-ary function symbols f to n-ary functions
ffe[p” -1,
@ constant symbols « to objects o’ € D, and
@ n-ary predicates P to n-ary relations PZ C D,
Interpretation of ground terms:

(f(tr,. )T = fH(07,. . 7)) (€D)
Truth of ground atoms:

T P(ty,... tn) iff (7. t,7) € P*
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o

D = {d,....dy},n>2 D = {1,2,3,..}

a = d 7 =1

bl = dy 27 = 2
eyed = {di} :
redd = D even? = {2,4,6,...}

7 = red(b) succ? = {(1—2),(2~3),...}

Z [~= eye(b)



Examples

TR

eye
red’

™ T

{da,...

dy
d>
{di1}

red(b)
eye(b)

ydp}t,n > 2

1I

N

even

N

succ

NN

s

Classical

Logic
{1,2,3,...}
1
2 Interpretations
{2,4,6,...}
{(1—2),(2—23),...}
even(3)
even(succ(3))
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Formal Semantics: Variable Maps

V is the set of variables. Function «: V' — D is a variable Coseat
map.

Notation: «[z/d] is identical to « except for = where

alz/d)(x) = d.

Interpretation of terms under Z, «:

b = a(x)
aI ,oa — CLI Variable maps
(f(tr, .. )P = fF05Y, . t,5%)

Truth of atomic formulae:
T,a k= P(ty,...,t,) iff &5 6,0 e PT

Example (cont.):
a={zx—d,y—d} ZI,alred(z) I, aly/di] = eye(y)
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Formal Semantics: Truth

Classical
Logic

Truth of ¢ by Z under a (Z, a |= ) is defined as follows.

T,a | P(t1,...,tn)
I,a -y
LakEeny
LakeVvy
LakEe—
LakFeey
I,a=Vz o

Z,a =3z

B2t P e PT

Lale

IT,aEpandZ,a E ¢

T,aEporZ,a v Detrion f
ifZ,a = ¢,thenZ, o =

T,aEe iffZ,al=y

Z,alz/dl = pforall d e D

Z,afz/d] = ¢ for some d € D
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Terminology

7, is a model of o iff Classical

Logic
T,a = .

A formula can be satisfiable, unsatisfiable, falsifiable, valid.

Two formulae ¢ and ¢ are logically equivalent (¢ = 1)) iff for _
all 7, Terminology

T,alE=p iff Z,aE1.

Note: P(x) # P(y)!
Logical Implication is also similar to propositional logic:

OkF¢ iff forallZ,ast.Z,a=0©also Z,a | ¢.
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Free and Bound Variables

Classical
Logic

Variables can be free or bound (by a quantifier) in a formula:

free(z) = {z}

free(f(t1,...,tn)) = free(t1)U...Ufree(ty)
free(P(t1,...,tn)) = free(t;)U...Ufree(t,)
free(—p) = free(y) Fizoandlent
free(px ) = free(p)Ufree(y) x = V,A,—, —
free(Zzp) = free(p) —{z} ==V,3

Example: vx (R(y][z) A 3y (-P(y.X) v R(y[Z]))

Framed occurrences are free, all others are bound.
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Open & Closed Formulae

Classical
Logic

@ Formulae without free variables are called closed
formulae or sentences. Formulae with free variables
are called open formulae.
@ Closed formulae are all we need when we want to state
something about the world. Open formulae (and
variable maps) are only necessary for technical
reasons (semantics of ¥ and 3).
@ Note that logical equivalence, satisfiability, and i
entailment are independent from variable maps if we
consider only closed formulae.

@ For closed formulae, we omit « in connection with |=:

TE .
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