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Why First-Order Logic (FOL)?

In propositional logic, the only building blocks are
atomic propositions.

We cannot talk about the internal structures of these
propositions.
Example:

All CS students know formal logic
Peter is a CS student
Therefore, Peter knows formal logic
Not possible in propositional logic

Idea: We introduce predicates, functions, object
variables and quantifiers.



Classical
Logic

First Order
Logic

Motivation

Syntax

Semantics

Terminology

Literature

Why First-Order Logic (FOL)?

In propositional logic, the only building blocks are
atomic propositions.

We cannot talk about the internal structures of these
propositions.
Example:

All CS students know formal logic
Peter is a CS student
Therefore, Peter knows formal logic
Not possible in propositional logic

Idea: We introduce predicates, functions, object
variables and quantifiers.



Classical
Logic

First Order
Logic

Motivation

Syntax

Semantics

Terminology

Literature

Why First-Order Logic (FOL)?

In propositional logic, the only building blocks are
atomic propositions.

We cannot talk about the internal structures of these
propositions.
Example:

All CS students know formal logic
Peter is a CS student
Therefore, Peter knows formal logic
Not possible in propositional logic

Idea: We introduce predicates, functions, object
variables and quantifiers.



Classical
Logic

First Order
Logic

Motivation

Syntax

Semantics

Terminology

Literature

Why First-Order Logic (FOL)?

In propositional logic, the only building blocks are
atomic propositions.

We cannot talk about the internal structures of these
propositions.
Example:

All CS students know formal logic
Peter is a CS student
Therefore, Peter knows formal logic
Not possible in propositional logic

Idea: We introduce predicates, functions, object
variables and quantifiers.



Classical
Logic

First Order
Logic

Motivation

Syntax

Semantics

Terminology

Literature

Syntax

variable symbols: x, y, z, . . .
n-ary function symbols: f(· · · ), g(· · · ), . . .
constant symbols: a, b, c, . . .
n-ary predicate symbols: P (· · · ), Q(· · · ), . . .

Terms t −→ x variable
| f(t1, . . . , tn) function application
| a constant

Formulae ϕ −→ P (t1, . . . , tn)atomic formula
| . . . propositional connectives
| ∀x(ϕ′) universal quantification
| ∃x(ϕ′) existential quantification

ground term, etc.: term, etc. without variable occurrences
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Semantics: Idea

In FOL, the universe of discourse consists of objects,
functions over these objects, and relations over these
objects.

Function symbols are mapped to functions, predicate
symbols are mapped to relations, and terms to objects.

Notation: Instead of I(x) we write xI .

Note: Usually one considers all possible non-empty
universes. (However, sometimes the interpretations are
restricted to particular domains, e.g. integers or real
numbers.)

Satisfiability and validity is then considered wrt all these
universes.
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Formal Semantics: Interpretations

Interpretations: I = 〈D, ·I〉 with D being an arbitrary
non-empty set and I being a function which maps

n-ary function symbols f to n-ary functions
fI ∈ [Dn → D],

constant symbols a to objects aI ∈ D, and

n-ary predicates P to n-ary relations P I ⊆ Dn.

Interpretation of ground terms:

(f(t1, . . . , tn))I = fI(t1
I , . . . , tn

I) (∈ D)

Truth of ground atoms:

I |= P (t1, . . . , tn) iff 〈t1I , . . . , tnI〉 ∈ P I
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Examples

D = {d1, . . . , dn}, n ≥ 2

aI = d1

bI = d2

eyeI = {d1}
redI = D
I |= red(b)

I 6|= eye(b)

D = {1, 2, 3, . . .}
1I = 1

2I = 2
...

evenI = {2, 4, 6, . . .}
succI = {(1 7→ 2), (2 7→ 3), . . .}

I 6|= even(3)

I |= even(succ(3))
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Formal Semantics: Variable Maps

V is the set of variables. Function α : V → D is a variable
map.
Notation: α[x/d] is identical to α except for x where
α[x/d](x) = d.
Interpretation of terms under I, α:

xI,α = α(x)

aI,α = aI

(f(t1, . . . , tn))I,α = fI(t1
I,α, . . . , tn

I,α)

Truth of atomic formulae:

I, α |= P (t1, . . . , tn) iff 〈t1I,α, . . . , tn
I,α〉 ∈ P I

Example (cont.):
α = {x 7→ d1, y 7→ d2} I, α |= red(x) I, α[y/d1] |= eye(y)
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Formal Semantics: Truth

Truth of ϕ by I under α (I, α |= ϕ) is defined as follows.

I, α |= P (t1, . . . , tn) iff 〈t1I,α, . . . , tn
I,α〉 ∈ P I

I, α |= ¬ϕ iff I, α 6|= ϕ

I, α |= ϕ ∧ ψ iff I, α |= ϕ and I, α |= ψ

I, α |= ϕ ∨ ψ iff I, α |= ϕ or I, α |= ψ

I, α |= ϕ→ψ iff if I, α |= ϕ, then I, α |= ψ

I, α |= ϕ↔ ψ iff I, α |= ϕ, iff I, α |= ψ

I, α |= ∀x ϕ iff I, α[x/d] |= ϕ for all d ∈ D
I, α |= ∃x ϕ iff I, α[x/d] |= ϕ for some d ∈ D
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Examples

Θ =

{
eye(a),eye(b)
∀x(eye(x) → red(x))

}
D = {d1, . . . , dn, } n > 1

aI = d1

bI = d1

eyeI = {d1}
redI = D

α = {(x 7→ d1), (y 7→ d2)}

Questions:

I, α |= eye(b)∨¬eye(b)?
Yes

I, α |= eye(x) →
eye(x) ∨ eye(y)? Yes

I, α |= eye(x) →
eye(y)? No

I, α |= eye(a) ∧ eye(b)?
Yes

I, α |= ∀x(eye(x) →
red(x))? Yes

I, α |= Θ? Yes
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Terminology

I, α is a model of ϕ iff

I, α |= ϕ.

A formula can be satisfiable, unsatisfiable, falsifiable, valid.
Two formulae ϕ and ψ are logically equivalent (ϕ ≡ ψ) iff for
all I, α:

I, α |= ϕ iff I, α |= ψ.

Note: P(x) 6≡ P(y)!
Logical Implication is also similar to propositional logic:

Θ |= ϕ iff for all I, α s.t. I, α |= Θ also I, α |= ϕ.
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Free and Bound Variables

Variables can be free or bound (by a quantifier) in a formula:

free(x) = {x}
free(f(t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn)

free(P (t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn)

free(¬ϕ) = free(ϕ)

free(ϕ ∗ ψ) = free(ϕ) ∪ free(ψ) ∗ = ∨,∧,→,↔
free(Ξxϕ) = free(ϕ)− {x} Ξ = ∀,∃

Example: ∀x (R( y , z ) ∧ ∃ y (¬P(y,x)∨ R(y, z )))
Framed occurrences are free, all others are bound.
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Open & Closed Formulae

Formulae without free variables are called closed
formulae or sentences. Formulae with free variables
are called open formulae.

Closed formulae are all we need when we want to state
something about the world. Open formulae (and
variable maps) are only necessary for technical
reasons (semantics of ∀ and ∃).

Note that logical equivalence, satisfiability, and
entailment are independent from variable maps if we
consider only closed formulae.

For closed formulae, we omit α in connection with |=:

I |= ϕ.
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