Why First-Order Logic (FOL)?

Classical
Logic
@ In propositional logic, the only building blocks are
atomic propositions.

@ We cannot talk about the internal structures of these
propositions.

Motivation

Why First-Order Logic (FOL)?

Classical
Logic

@ In propositional logic, the only building blocks are
atomic propositions.

@ We cannot talk about the internal structures of these
propositions.
@ Example:

e All CS students know formal logic
o Peter is a CS student
e Therefore, Peter knows formal logic

Motivation

Why First-Order Logic (FOL)?

Classical
Logic

@ In propositional logic, the only building blocks are
atomic propositions.

@ We cannot talk about the internal structures of these
propositions.
@ Example:
e All CS students know formal logic
@ Peteris a CS student
e Therefore, Peter knows formal logic
@ Not possible in propositional logic

Motivation

Why First-Order Logic (FOL)?

Classical
Logic

@ In propositional logic, the only building blocks are
atomic propositions.

@ We cannot talk about the internal structures of these
propositions.
@ Example:

e All CS students know formal logic
o Peter is a CS student

e Therefore, Peter knows formal logic
@ Not possible in propositional logic

@ Idea: We introduce predicates, functions, object
variables and quantifiers.

Motivation

Classical

@ variable symbols: z,y, z, ... Logic

Syntax

Classical

@ variable symbols: z,y, z, . .. Logic
@ n-ary function symbols: f(---),g(---),...

Syntax

Classical

@ variable symbols: z,y, z, . .. Logic
@ n-ary function symbols: f(---),g(---),...
@ constant symbols: a,b, ¢, ...

Syntax

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax

Terms t — variable

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax

Terms t —z variable
| f(t1,...,t,) function application

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax

Terms t —z variable
| f(t1,...,t,) function application
| a constant

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax
Terms t —z variable

| f(t1,...,t,) function application

| a constant

Formulae ¢ — P(t1,...,t,)atomic formula

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax
Terms t —z variable
| f(t1,...,t,) function application
| a constant
Formulae ¢ — P(t1,...,t,)atomic formula

| ... propositional connectives

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax
Terms t —z variable
| f(t1,...,t,) function application
| a constant
Formulae ¢ — P(t1,...,t,)atomic formula

| ... propositional connectives
| Vaz(¢) universal quantification

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax
Terms t —z variable
| f(t1,...,t,) function application
| a constant
Formulae ¢ — P(t1,...,t,)atomic formula
| ... propositional connectives
| Vaz(¢) universal quantification

| Fz(¢) existential quantification

Classical

@ variable symbols: z,y, z, ... Logic
@ n-ary function symbols: f(---),g(---),...

@ constant symbols: a,b, ¢, ...

@ n-ary predicate symbols: P(---),Q(---),. ..

Syntax

Terms t —z variable

| f(t1,...,t,) function application

| a constant
Formulae ¢ — P(t1,...,t,)atomic formula

| ... propositional connectives

| Vaz(¢) universal quantification

| Fz(¢) existential quantification

ground term, etc.: term, etc. without variable occurrences

Semantics: Ildea

Classical
Logic

@ In FOL, the universe of discourse consists of objects,
functions over these objects, and relations over these
objects.

@ Function symbols are mapped to functions, predicate
symbols are mapped to relations, and terms to objects. Semantics

Semantics: Ildea

Classical
Logic

@ In FOL, the universe of discourse consists of objects,
functions over these objects, and relations over these
objects.

@ Function symbols are mapped to functions, predicate
symbols are mapped to relations, and terms to objects. Semantics
@ Notation: Instead of Z(z) we write z%.

@ Note: Usually one considers all possible non-empty
universes. (However, sometimes the interpretations are
restricted to particular domains, e.g. integers or real
numbers.)

@ Satisfiability and validity is then considered wrt all these
universes.

Formal Semantics: Interpretations

Classical

Interpretations: Z = (D, -T) with D being an arbitrary Logic
non-empty set and Z being a function which maps

@ n-ary function symbols f to n-ary functions
ffe [D" — D],

Interpretations

Formal Semantics: Interpretations

Classical

Interpretations: Z = (D, -T) with D being an arbitrary Logic
non-empty set and Z being a function which maps
@ n-ary function symbols f to n-ary functions
ffe[p” -1,
@ constant symbols a to objects o’ € D,

Interpretations

Formal Semantics: Interpretations

Classical

Interpretations: Z = (D, -T) with D being an arbitrary Logic
non-empty set and Z being a function which maps
@ n-ary function symbols f to n-ary functions
ffe[p” -1,
@ constant symbols « to objects o’ € D, and
@ n-ary predicates P to n-ary relations PZ C D,

Formal Semantics: Interpretations

Classical

Interpretations: Z = (D, -T) with D being an arbitrary Logic
non-empty set and Z being a function which maps
@ n-ary function symbols f to n-ary functions
ffe[p” -1,
@ constant symbols « to objects o’ € D, and
@ n-ary predicates P to n-ary relations PZ C D,
Interpretation of ground terms:

(f(t1, .. ta)F = fHt7, ... t.7) (e D)

Formal Semantics: Interpretations

Classical

Interpretations: Z = (D, -T) with D being an arbitrary Logic
non-empty set and Z being a function which maps

@ n-ary function symbols f to n-ary functions
ffe[p” -1,
@ constant symbols « to objects o’ € D, and
@ n-ary predicates P to n-ary relations PZ C D,
Interpretation of ground terms:

(f(tr,.)T = fH(07,. . 7)) (€D)
Truth of ground atoms:

T P(ty,... tn) iff (7. t,7) € P*

Examples

N
D {di,...,dp},n>2
a = d
bl = d,
ey = {di}

red = D

Examples

TR

eye
red’

™ T

{dy,...

dy
d>
{di1}

red(b)
eye(b)

)dn}ynz 2

Classical
Logic

Interpretations

Examples

o

D = {d,....dy},n>2 D = {1,2,3,..}

a = d 7 =1

bl = dy 27 = 2
eyed = {di} :
redd = D even? = {2,4,6,...}

7 = red(b) succ? = {(1—2),(2~3),...}

Z [~= eye(b)

Examples

TR

eye
red’

™ T

{da,...

dy
d>
{di1}

red(b)
eye(b)

ydp}t,n > 2

1I

N

even

N

succ

NN

s

Classical

Logic
{1,2,3,...}
1
2 Interpretations
{2,4,6,...}
{(1—2),(2—23),...}
even(3)
even(succ(3))

Formal Semantics: Variable Maps

V is the set of variables. Function a.: V' — D is a variable S
map.

Notation: «[z/d] is identical to « except for = where

alz/d)(x) = d.

Variable maps

Formal Semantics: Variable Maps

V is the set of variables. Function «: V' — D is a variable Coseat
map.

Notation: «[z/d] is identical to « except for = where

alz/d)(x) = d.

Interpretation of terms under Z, «:

b = a(x)

aI,a A

= a Variable maps

(f(tr, ..)P = fF05Y, . t,5%)

Formal Semantics: Variable Maps

V' is the set of variables. Function «.: V — D is a variable Classical

map.

Logic

Notation: «[z/d] is identical to « except for = where

alz/d)(x) = d.

Interpretation of terms under Z, «:

xI,a _

aI,a —
(f(t, ... ta)"> =

Truth of atomic formulae:

T.a k= P(ty,. .. t,) iff

a Variable maps

Formal Semantics: Variable Maps

V is the set of variables. Function «: V' — D is a variable Coseat
map.

Notation: «[z/d] is identical to « except for = where

alz/d)(x) = d.

Interpretation of terms under Z, «:

b = a(x)
aI ,oa — CLI Variable maps
(f(tr, ..)P = fF05Y, . t,5%)

Truth of atomic formulae:
T,a k= P(ty,...,t,) iff &5 6,0 e PT

Example (cont.):
a={zx—d,y—d} ZI,alred(z) I, aly/di] = eye(y)

Formal Semantics: Truth

Classical
Logic

Truth of ¢ by Z under a (Z, a |=) is defined as follows.

T,al= P(ty,... t,) iff (5o 6,0 e Pt

Definition of truth

Formal Semantics: Truth

Classical
Logic

Truth of ¢ by Z under a (Z, a |=) is defined as follows.

TZ,a = P(t1,... tn)
I,a -y

ZaE oA
LTafE eV

Lo o=
LaEpey

B2t P e PT

Lale

IT,aEpandZ,a E ¢

T,aEporZ,a v Detrion f
ifZ,a = ¢,thenZ, o =

T,aEe iffZ,al=y

Formal Semantics: Truth

Classical
Logic

Truth of ¢ by Z under a (Z, a |=) is defined as follows.

T,a = Pty ..., ty)
I,a -y
LakEeny
LakeVvy
LakEe—
LakFeey
I,a=Vz o

B2t P e PT

Lale

IT,aEpandZ,a E ¢

T,aEporZ,a v Detrion f
ifZ,a = ¢,thenZ, o =

T,aEe iffZ,al=y

Z,alz/dl = pforall d e D

Formal Semantics: Truth

Classical
Logic

Truth of ¢ by Z under a (Z, a |=) is defined as follows.

T,a | P(t1,...,tn)
I,a -y
LakEeny
LakeVvy
LakEe—
LakFeey
I,a=Vz o

Z,a =3z

B2t P e PT

Lale

IT,aEpandZ,a E ¢

T,aEporZ,a v Detrion f
ifZ,a = ¢,thenZ, o =

T,aEe iffZ,al=y

Z,alz/dl = pforall d e D

Z,afz/d] = ¢ for some d € D

Examples

Classical
Logic

{ eye(a), eye(b) }
Vz(eye(z) — red(zx))
{dl,...,dn,} n>1

dy

dy

{d1}

D

{(z = d1),(y — d2)}

Definition of truth

Examples

QUEStiOﬂS: Classical

Logic

{ eye(a), eye(b) } I,a = eye(b) v —eye(b)?

Va(eye(z) — red(z))
{dl,‘..,dn,} n>1
d1
di
(di} e
D

{(z — d1), (y — d2)}

Examples

QUEStiOﬂS: Classical

Logic

{ eye(a), eye(b) } QZ‘ = eye(b) vV —eye(b)?

Va(eye(z) — red(z))
{dl,‘..,dn,} n>1
d1
di
(1) oo
D

{(z — d1), (y — d2)}

Examples

QUEStiOﬂS: Clli?;iiﬁal
o — { eye(a), eye(b) } gé‘;‘ = eye(b) v —eye(b)?
Voleyels) —red(r) | 00
D = {dl,...,dn,} n>1 eye(m)\/eye(y)’?
a = d
bt = a4
eyeI — {dl } Definition of truth
redl = D

a = {(z—di),(y—do)}

Examples

QUEStiOﬂS: Clli?;iiﬁal
o — { eye(a), eye(b) } gé‘;‘ = eye(b) v —eye(b)?
Voleyels) —red(r) | 00
a = d
bf = d
eyeI — {dl } Definition of truth
redl = D

a = {(z—di),(y—do)}

Examples

QUEStiOﬂS: Clli?;iiﬁal
7z, eye(b) vV —eye(b)?
{ eye(a)’ eye(b) } Yeg): Yy () Yy ()

Vx(eyE(.'If) - red(m)) 7,a = eye(z) —

{dla-..7dn7} n>1 eye(z) V eye(y)? Yes

d T,a = eye(z) —

d1 eye(y)?

{dl} efinition of truth
D

{(z = d1), (y — d2)}

Examples

QUEStiOﬂS: Clli?;iiﬁal
7z, eye(b) vV —eye(b)?
{ eye(a)’ eye(b) } Yeg): Yy () Yy ()

Vx(eyE(.'If) - red(m)) 7,a = eye(z) —

{dla-..7dn7} n>1 eye(x)\/eye(y)? Yes

d T,a = eye(z) —

dy eye(y)? No

{dl} efinition of truth
D

{(z = d1), (y — d2)}

Examples

{ eye(a), eye(b)
Vz(eye(z) — red(zx))

{di,...,dp,} n>1
dy

dy

{di}

D

{(z = d), (y = d2)}

QUEStiOﬂS: Classical

}

Logic
Z,a = eye(b) Vv —eye(b)?
Yes
7,a = eye(z) —
eye(z) Vv eye(y)? Yes
T,a = eye(z) —
eye(y)? No
Z, «): eye(a) A eye(b)’) Definition of truth

Examples

{ eye(a), eye(b)
Vz(eye(z) — red(zx))

{di,...,dp,} n>1
dy

dy

{di}

D

{(z = d), (y = d2)}

QUEStiOﬂS: Classical

}

Logic
Z,a = eye(b) Vv —eye(b)?
Yes
7,a = eye(z) —
eye(z) Vv eye(y)? Yes
Z,a = eye(z) —
eye(y)? No
17 «): eye(a) A eye(b)’) Definition of truth
Yes

Examples

{ eye(a), eye(b)
Vz(eye(z) — red(zx))

{d, .
di

dy
{di}
D
{(z = d1), (y — d2)}

'7dn7} n>1

Questions:

}

Classical
Logic

Z,a = eye(b) Vv —eye(b)?
Yes

Z,a = eye(z) —

eye(z) Vv eye(y)? Yes
T,a = eye(z) —
eye(y)? No

T,a = eye(a) A eye(b)?
Yes

T,a = Vz(eye(x) —
red(z))?

Definition of truth

Examples

{ eye(a), eye(b)
Vz(eye(z) — red(zx))

{d, .
di

dy
{di}
D
{(z = d1), (y — d2)}

'7dn7} n>1

Questions:

}

Classical
Logic

Z,a = eye(b) Vv —eye(b)?
Yes

Z,a = eye(z) —

eye(z) Vv eye(y)? Yes
T,a = eye(z) —
eye(y)? No

T, o = eye(a) A eye(b)?
Yes

T, o | Ve(eye(z) —
red(z))? Yes

Definition of truth

Examples

{ eye(a), eye(b)
Vz(eye(z) — red(zx))

{d, .
di

dy
{di}
D
{(z = d1), (y — d2)}

'7dn7} n>1

Questions:

}

Classical
Logic

Z,a = eye(b) Vv —eye(b)?
Yes

Z,a = eye(z) —
eye(z) Vv eye(y)? Yes
T,a = eye(z) —
eye(y)? No

T, o = eye(a) A eye(b)?
Yes

T, o | Ve(eye(z) —
red(z))? Yes

I,a E©7?

Definition of truth

Examples

{ eye(a), eye(b)
Vz(eye(z) — red(zx))

{d, .
di

dy
{di}
D
{(z = d1), (y — d2)}

'7dn7} n>1

Questions:

}

Classical
Logic

Z,a = eye(b) Vv —eye(b)?
Yes

Z,a = eye(z) —
eye(z) Vv eye(y)? Yes
T,a = eye(z) —
eye(y)? No

T, o = eye(a) A eye(b)?
Yes

T,a = Vz(eye(x) —
red(z))? Yes

T,a =07 Yes

Definition of truth

Terminology

Classical

I, o is a model of) iff Logic

T,a = .

Terminology

Terminology

Classical

I, o is a model of) iff Logic

T,a = .

A formula can be satisfiable, unsatisfiable, falsifiable, valid.

Terminology

Terminology

Classical

I, o is a model of) iff Logic

T,a = .

A formula can be satisfiable, unsatisfiable, falsifiable, valid.
Two formulae ¢ and ¢ are logically equivalent (¢ = 1)) iff for
all Z, o

Terminology

T,alE=p iff Z,aE1.

Terminology

7, is a model of o iff Classical

Logic
T,a = .

A formula can be satisfiable, unsatisfiable, falsifiable, valid.

Two formulae ¢ and ¢ are logically equivalent (¢ = 1)) iff for _
all 7, Terminology

T,alE=p iff Z,aE1.

Note: P(x) # P(y)!

Terminology

7, is a model of o iff Classical

Logic
T,a = .

A formula can be satisfiable, unsatisfiable, falsifiable, valid.

Two formulae ¢ and ¢ are logically equivalent (¢ = 1)) iff for _
all 7, Terminology

T,alE=p iff Z,aE1.

Note: P(x) # P(y)!
Logical Implication is also similar to propositional logic:

OkF¢ iff forallZ,ast.Z,a=0©also Z,a | ¢.

Free and Bound Variables

Classical
Logic

Variables can be free or bound (by a quantifier) in a formula:

free(z) = {z}

Free and Bound Variables

Classical
Logic

Variables can be free or bound (by a quantifier) in a formula:

free(x) = {z}
free(f(t1,...,tn)) = free(t1)U...Ufree(ty)

Free and Bound Variables

Classical
Logic

Variables can be free or bound (by a quantifier) in a formula:
free(z) = {z}

free(f(t1,...,tn)) = free(t1)U...Ufree(ty)
free(P(t1,...,tn)) = free(t;)U...Ufree(t,)

Free and Bound Variables

Classical
Logic

Variables can be free or bound (by a quantifier) in a formula:

free(z) = {z}
free(f(t1,...,tn)) = free(t1)U...Ufree(ty)
free(P(t1,...,tn)) = free(t;)U...Ufree(t,)
free(—p) = free(y)

Free and Bound Variables

Classical
Logic

Variables can be free or bound (by a quantifier) in a formula:

free(z) = {z}
free(f(t1,...,tn)) = free(
free(P(t1,...,t,)) = free(

free(—p) = free(p
free(px) = free(p

Free and Bound Variables

=
Variables can be free or bound (by a quantifier) in a formula:
free(z) = {z}

free(f(t1,...,tn)) = free(t1)U...Ufree(ty)
free(P(t1,...,tn)) = free(t;)U...Ufree(t,)

free(—p) = free(y)

free(px) = free(p)Ufree(y) x = V,A,—, —

free(Zzp) = free(p) —{z} ==V,3

Free and Bound Variables

Classical
Logic

Variables can be free or bound (by a quantifier) in a formula:

free(z) = {z}

free(f(t1,...,tn)) = free(t1)U...Ufree(ty)
free(P(t1,...,tn)) = free(t;)U...Ufree(t,)
free(—p) = free(y) Fizoandlent
free(px) = free(p)Ufree(y) x = V,A,—, —
free(Zzp) = free(p) —{z} ==V,3

Example: vx (R(y][z) A 3y (-P(y.X) v R(y[Z]))

Framed occurrences are free, all others are bound.

Open & Closed Formulae

Classical
. i Logic
@ Formulae without free variables are called closed

formulae or sentences. Formulae with free variables
are called open formulae.

Open and Closed
Formulae

Open & Closed Formulae

Classical
Logic

@ Formulae without free variables are called closed
formulae or sentences. Formulae with free variables

are called open formulae.

@ Closed formulae are all we need when we want to state
something about the world. Open formulae (and
variable maps) are only necessary for technical
reasons (semantics of ¥ and 3).

Open and Closed
Formulae

Open & Closed Formulae

Classical
Logic

@ Formulae without free variables are called closed
formulae or sentences. Formulae with free variables
are called open formulae.

@ Closed formulae are all we need when we want to state
something about the world. Open formulae (and
variable maps) are only necessary for technical
reasons (semantics of ¥ and 3).

@ Note that logical equivalence, satisfiability, and i
entailment are independent from variable maps if we
consider only closed formulae.

Open & Closed Formulae

Classical
Logic

@ Formulae without free variables are called closed
formulae or sentences. Formulae with free variables
are called open formulae.
@ Closed formulae are all we need when we want to state
something about the world. Open formulae (and
variable maps) are only necessary for technical
reasons (semantics of ¥ and 3).
@ Note that logical equivalence, satisfiability, and i
entailment are independent from variable maps if we
consider only closed formulae.

@ For closed formulae, we omit « in connection with |=:

TE .

Literature

Classical
Logic

Harry R. Lewis and Christos H. Papadimitriou. Elements of

the Theory of Computation. Prentice-Hall, Englewood Cliffs,

NJ, 1981 (Chapters 8 & 9).

Volker Sperschneider and Grigorios Antoniou. Logic — A

Foundation for Computer Science. Addison-Wesley,

Reading, MA, 1991 (Chapters 1-3). Literature
H.-P. Ebbinghaus, J. Flum, and W. Thomas. Einflihrung in

die mathematische Logik. Wissenschaftliche

Buchgesellschaft, Darmstadt, 1986.

U. Schoning. Logik fir Informatiker. Spektrum-Verlag.

	First Order Logic
	Motivation
	Syntax
	Semantics
	Interpretations
	Variable maps
	Definition of truth

	Terminology
	Free and bound variables
	Open and Closed Formulae

	Literature

