#### Theoretische Informatik

Prof. Dr. B. Nebel, Prof. Dr. G. Lausen M. Ragni, K. Simon und C.-N. Ziegler WS 2004/2005 Universität Freiburg Institut für Informatik

# Übungsblatt 4

Abgabe: 19. November 2004

# Aufgabe 4.1 (Rekursiv aufzählbar – 4 Punkte)

Beweisen oder widerlegen Sie:

- 1. Seien L und L' rekursiv aufzählbar. Dann ist L-L', die Mengendifferenz der beiden Sprachen rekursiv aufzählbar.
- 2. Für zwei Sprachen L und L' mit  $L \subseteq L'$  und L rekursiv aufzählbar gilt: Falls L' nicht rekursiv aufzählbar ist, dann ist L' L unendlich.

## Aufgabe 4.2 (Entscheidbarkeit I – 4 Punkte)

Für eine Menge  $B \subseteq \mathbb{N} \times \mathbb{N}$  definieren wir die Projektion von B als

$$Pr(B) = \{x \mid \exists y (x, y) \in B\}.$$

Zeigen Sie:

Eine Menge ist genau dann aufzählbar, wenn sie die Projektion einer entscheidbaren Menge ist.

#### Aufgabe 4.3 (Entscheidbarkeit II – 4 Punkte)

Zeigen Sie:

- 1. Falls das Halteproblem entscheidbar wäre, dann könnte man jede rekursiv aufzählbare Sprache entscheiden.
- 2. Sind die folgenden Probleme über Programme in einer beliebigen Programmiersprache entscheidbar? Begründen Sie Ihre Antwort!
  - (a) Gegeben sei ein Programm P. Gefragt: Läuft das Programm für eine festgelegte Eingabe x in eine Endlosschleife?
  - (b) Gegeben seien zwei Programme  $P_1$  und  $P_2$ . Gefragt: Erzeugen beide Programme bei gleicher Eingabe die gleiche Ausgabe?

### Aufgabe 4.4 (Entscheidbarkeit III – 4 Punkte)

Welche der folgenden Probleme über Turingmaschinen sind entscheidbar, und welche nicht? Begründen Sie Ihre Antwort!

- 1. Gegeben sei eine Turingmaschine M, ein Zustand z und ein Wort w. Erreicht M den Zustand z wenn sie mit w im Ausgangszustand gestartet wird?
- 2. Gegeben sei eine Turingmaschine M, der Startzustand  $z_0$  und ein Zustand z. Gibt es eine Konfiguration  $(z_0\underline{a}w)$  von der aus eine Konfiguration mit Zustand z erreichbar ist?

- 3. Gegeben sei eine Turingmaschine M und zwei voneinander verschiedene Zustände  $z_i$  und  $z_j$ . Gibt es eine Konfiguration  $(uz_i\underline{a}v)$  von der aus eine Konfiguration mit Zustand  $z_j$  erreichbar ist?
- 4. Gegeben sei eine Turingmaschine M und ein Symbol a. Schreibt M jemals das Symbol a wenn sie mit leerem Band gestartet wird?
- 5. Gegeben sei eine Turingmaschine M. Schreibt M jemals ein vom Leerzeichen verschiedenes Symbol wenn sie mit leerem Band gestartet wird?
- 6. Gegeben sei eine Turingmaschine M und ein Wort w. Bewegt M jemals den Kopf nach links wenn sie mit w als Eingabe gestartet wird?
- 7. Gegeben seien zwei Turingmaschinen. Akzeptiert eine der Maschinen  $\overline{L}$ , wenn die andere Maschine die Sprache L akzeptiert?
- 8. Gegeben seien zwei Turingmaschinen. Gibt es ein Wort, bei dem beide halten?

### **Aufgabe 4.5** (Genieaufgabe – freiwillig)

Sei eine endliche Menge von 4-farbigen Plättchen mit Einheitsgröße gegeben. Jedes dieser Plättchen habe unendlich viele Kopien.



Gibt es einen Algorithmus, der entscheidet, ob  $\mathbb{N} \times \mathbb{N}$  mit diesem Satz Plättchen so parkettiert werden kann, dass nur Dreiecke mit gleicher Farbe aneinander liegen, wobei ein Plättchen  $p_0$  links unten vorgegeben ist?

Formal: Ein Plättchensatz ist ein 7-Tupel  $\mathcal{P}=(P,p_0,F,o,u,l,r)$ ; dabei ist P eine endliche Menge von Plättchen mit Startplättchen  $p_0\in P, F$  eine endliche Menge von Farben und die Funktionen  $o,u,l,r:P\to F$  definieren die Farben der Plättchen am oberen, unteren, linken und rechten Rand. Eine Parkettierung von  $\mathbb{N}\times\mathbb{N}$  durch  $\mathcal{P}$  ist eine Funktion  $f:\mathbb{N}\times\mathbb{N}\to P$  mit:

$$f(0,0) = p_0$$
 
$$o(f(m,n)) = u(f(m,n+1))$$
 für alle  $m, n \in \mathbb{N}$  
$$f(m,n) = l(f(m+1,n))$$
 für alle  $m, n \in \mathbb{N}$ 

Beweisen Sie: Das Problem, ob für einen gegebenen Plättchensatz die Ebene parkettierbar ist, ist unentscheidbar.

**Hinweis:** Reduzieren Sie das Halteproblem darauf und benutzen Sie die Plättchen zur Kodierung von Konfigurationen.

Achtung: Diese Aufgabe schicken Sie bitte per Mail bis spätestens 26. November an info3@informatik.uni-freiburg.de.

Die Übungsblätter sollen in Gruppen von zwei Studenten bearbeitet werden. Bitte schreiben Sie beide Namen, die Nummer Ihrer Übungsgruppe und den Namen Ihres Tutors auf den Lösungszettel.

**Abgabe** bis 11.15 Uhr in der Vorlesung oder Einwurf in die entsprechenden Briefkästen im Erdgeschoss von Gebäude 51.