Theoretische Informatik

Prof. Dr. B. Nebel, Prof. Dr. G. Lausen M. Ragni, K. Simon und C.-N. Ziegler WS 2004/2005

Universität Freiburg Institut für Informatik

Übungsblatt 3

Abgabe: 12. November 2004

Aufgabe 3.1 (Rekursiv aufzählbar I – 4 Punkte)

In der Vorlesung haben Sie den Begriff der rekursiven Aufzählbarkeit als Semi-Entscheidbarkeit kennengelernt. Tatsächlich gibt es eine dazu äquivalente Definition: Eine Sprache $A \subseteq \Sigma^*$ ist genau dann rekursiv aufzählbar, falls $A = \emptyset$ oder falls es eine totale und berechenbare Funktion $f : \mathbb{N} \to \Sigma^*$ gibt, so daß

$$A = \{f(0), f(1), f(2), \dots\}.$$

Sprechweise: f zählt A auf. Zeigen Sie: Eine Sprache $A \subseteq \mathbb{N}$ ist genau dann rekursiv aufzählbar, wenn sie semi-entscheidbar ist.

Hinweis: Für die Rückrichtung identifizieren sie den Input n mit einem Tupel (m,k) von natürlichen Zahlen, z. B. via $n=c(m,k)=\binom{m+k+1}{2}+m$, wobei Sie die Berechenbarkeit der Umkehrfunktion c^{-1} (d. h. $(m,k)=c^{-1}(n)$) voraussetzen können.

Aufgabe 3.2 (Rekursiv aufzählbar II – 4 Punkte)

Zeigen Sie für Mengen $A, B \subseteq \mathbb{N}$:

Jede unendliche rekursiv aufzählbare Menge A besitzt eine unendliche entscheidbare Teilmenge B.

Hinweis: Verwenden Sie die Definition von rekursiv aufzählbar aus Aufgabe 1.

Aufgabe 3.3 (Turing-Berechenbarkeit – 4 Punkte)

Geben Sie eine 1-Band Turingmaschine an, welche die Funktion

$$f(w) = ww$$

für w ∈ {a,b}* berechnet.

Beschreiben Sie zunächst Ihre Idee und senden Sie dann Ihre Lösung im Eingabeformat des TM-Simulators http://ais.informatik.uni-freiburg.de/turing-applet per E-Mail an Ihren Tutor.

Aufgabe 3.4 (Turingmaschine – 4 Punkte)

Wir konstruieren jetzt eine zweidimensionale Turingmaschine, indem wir das Band einer 1-Band Turingmaschine durch ein unendliches "Schachbrett " $(\mathbb{Z} \times \mathbb{Z})$ ersetzen. Der Kopf der Maschine steht auf der Position (0,0) und es gibt vier Bewegungsrichtungen Rechts, Links, Oben, Unten und Nichtbewegen. Beweisen oder widerlegen Sie: Die zweidimensionale Turingmaschine ist äquivalent zur 1-Band Turingmaschine.

Die Übungsblätter sollen in Gruppen von zwei Studenten bearbeitet werden. Bitte schreiben Sie beide Namen auf Ihren Lösungszettel, die Nummer Ihrer Übungsgruppe und den Namen Ihres Tutors.

Abgabe bis 11.15 Uhr in der Vorlesung oder Einwurf in die entsprechenden Briefkästen im Erdgeschoss von Gebäude 51.