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Reinforcement Learning

http://www.cs.ualberta.ca/~sutton/book/the-book.html

Mainly based on 
“Reinforcement Learning –
An Introduction” by Richard 
Sutton and Andrew Barto

Slides are mainly based on 
the course material provided 
by the same authors
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Learning from Experience Plays a Role in …

Artificial Intelligence

Control Theory and
Operations ResearchPsychology

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience
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What is Reinforcement Learning?

Learning from interaction
Goal-oriented learning
Learning about, from, and while interacting with an 
external environment
Learning what to do—how to map situations to 
actions—so as to maximize a numerical reward signal
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Supervised Learning

Training Info  =  desired (target) outputs

Supervised Learning 
SystemInputs Outputs

Error  =  (target output  – actual output)
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Reinforcement Learning

Training Info  =  evaluations (“rewards” / “penalties”)

RL
SystemInputs Outputs (“actions”)

Objective:  get as much reward as possible



Reinforcement Learning 6

Key Features of RL

Learner is not told which actions to take
Trial-and-Error search
Possibility of delayed reward (sacrifice short-term 
gains for greater long-term gains)
The need to explore and exploit
Considers the whole problem of a goal-directed 
agent interacting with an uncertain environment
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Complete Agent

Temporally situated
Continual learning and planning
Object is to affect the environment
Environment is stochastic and uncertain

Environment

actionstate

reward
Agent
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Elements of RL

Policy: what to do
Reward: what is good
Value: what is good because it predicts reward
Model: what follows what

Policy

Reward

Value
Model of

environment
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An Extended Example: Tic-Tac-Toe
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he/she sometimes makes mistakes
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An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:
State         V(s) – estimated probability of winning

.5          ?
2. Now play lots of games. To 

pick our moves, look ahead 
one step:

.5          ?
x

..  .  .

xxx
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 .  .

1        win
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o
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x
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 .
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current state

.  .  .
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.  .  .
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x

x
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x
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various possible
next states

Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.
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RL Learning Rule for Tic-Tac-Toe

movegreedy  our after  statethe–    s
movegreedy  our before  statethe–     s

′

[ ])s(V)s(V)s(V)s(V
: a–  )s(V toward )s(V each increment We

−′α+←

′ backup

parametersize -step the
. e.g., fraction, positive  smalla 1=α

“Exploratory” move
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How can we improve this T.T.T. player?

Take advantage of symmetries
representation/generalization
How might this backfire?

Do we need “random” moves? Why?
Do we always need a full 10%?

Can we learn from “random” moves?
Can we learn offline?

Pre-training from self play?
Using learned models of opponent?

. . .
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e.g. Generalization

Table                              Generalizing Function Approximator

State            VState            V

s
s
s
.
.
.

s

1

2

3

N

Train
here
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How is Tic-Tac-Toe Too Easy?

Finite, small number of states
One-step look-ahead is always possible
State completely observable
…
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Some Notable RL Applications

TD-Gammon: Tesauro
world’s best backgammon program

Elevator Control: Crites & Barto
high performance down-peak elevator controller

Dynamic Channel Assignment: Singh & Bertsekas, Nie & 
Haykin

high performance assignment of radio channels to 
mobile telephone calls

…
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TD-Gammon
Tesauro, 1992–1995

TD error
Vt+1 −VtEffective branching factor 400

Action selection
by 2–3 ply search

Value

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world
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Elevator Dispatching
Crites and Barto, 1996

10 floors, 4 elevator cars

STATES: button states;   positions, 
directions, and motion states of 
cars; passengers in cars & in 
halls

ACTIONS:  stop at, or go by, next 
floor

REWARDS: roughly, –1  per time 
step for each person waiting

Conservatively about 10     states22
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Performance Comparison
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Evaluative Feedback

Evaluating actions vs. instructing by giving correct actions

Pure evaluative feedback depends totally on the action taken. 
Pure instructive feedback depends not at all on the action taken. 

Supervised learning is instructive; optimization is evaluative

Associative vs. Nonassociative:

Associative: inputs mapped to outputs; learn the best 
output for each input

Nonassociative: “learn” (find) one best output

n-armed bandit (at least how we treat it) is:

Nonassociative

Evaluative feedback
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The n-Armed Bandit Problem

Choose repeatedly from one of n actions; each 
choice is called a play
After each play    , you get a reward   , where

)a(Qa|rE t
*

tt =
ta tr

These are unknown action values
Distribution of      depends only on  rt at

Objective is to maximize the reward in the long term, 
e.g., over 1000 plays

To solve the n-armed bandit problem, 
you must explore a variety of actions 

and then exploit the best of them.
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The Exploration/Exploitation Dilemma

Suppose you form estimates

The greedy action at t is

You can’t exploit all the time; you can’t explore all the 
time
You can never stop exploring; but you should always 
reduce exploring

Qt(a) ≈ Q*(a) action value estimates

at
* = argmax

a
Qt(a)

at = at
* ⇒ exploitation

at ≠ at
* ⇒ exploration
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Action-Value Methods

Methods that adapt action-value estimates and 
nothing else, e.g.:  suppose by the t-th play, action 
had been chosen      times, producing rewards                   
then 

a

k
t k

rrr
)a(Q a

+++
=

L21

ka ,,r,r K21

“sample average” 

)a(Q)a(Qlim *
tka

=
∞→

a
,r

ak
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ε-Greedy Action Selection

Greedy action selection:

ε-Greedy:

)a(Qmaxargaa ta

*
tt ==

{ at
*  with probability 1 − ε

random action with probability ε
at =

... the simplest way to try to balance exploration and 
exploitation
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10-Armed Testbed

n = 10 possible actions
Each           is chosen randomly from a normal 
distribution: 
each      is also normal: 
1000 plays
repeat the whole thing 2000 times and average the results
Evaluative versus instructive feedback

)),a(Q(N t
* 1

),(N 10
rt

)a(Q*



Reinforcement Learning 25

ε-Greedy Methods on the 10-Armed Testbed
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Softmax Action Selection

Softmax action selection methods grade action probs. 
by estimated values.
The most common softmax uses a Gibbs, or 
Boltzmann, distribution:

Choose action a on play t with probability

where τ is the “computational temperature”

,
e

e n

b
)b(Q

)a(Q

t

t

∑ =1
τ

τ
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Evaluation Versus Instruction

Suppose there are K possible actions and you select 
action number k.
Evaluative feedback would give you a single score f, 
say 7.2. 
Instructive information, on the other hand, would say 
that action k’, which is eventually different from 
action k, have actually been correct. 
Obviously, instructive feedback is much more 
informative, (even if it is noisy).
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Binary Bandit Tasks

at = 1    or    at = 2Suppose you have just two actions:

rt = success    or    rt = failureand just two rewards: 

Then you might infer a target or desired action: 

{ at                         if  success
the other action    if  failure

dt =

and then always play the action that was most often 
the target 

Call this the supervised algorithm. 
It works fine on deterministic tasks but is 
suboptimal if the rewards are stochastic. 
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Contingency Space

The space of all possible binary bandit tasks:



Reinforcement Learning 30

Linear Learning Automata

Let π t(a) = Pr at = a{ } be the only adapted parameter

LR –I  (Linear, reward - inaction)
        On success :  π t +1(at ) = π t (at ) + α (1 − π t(at )) 0 < α < 1
                 (the other action probs. are adjusted to still sum to 1)
        On failure :   no change

LR -P (Linear, reward - penalty)
        On success :  π t +1(at ) = π t (at) + α (1 − π t(at )) 0 < α < 1
                 (the other action probs. are adjusted to still sum to 1)
        On failure :   π t +1(at ) = π t (at ) + α (0 − π t (at )) 0 < α < 1

For two actions, a stochastic, incremental version of the supervised 
algorithm
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Performance on Binary Bandit Tasks A and B
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Incremental Implementation

Recall the sample average estimation method:

  
Qk =

r1 + r2 +Lrk

k
The average of the first k rewards is
(dropping the dependence on     ):a

Can we do this incrementally (without storing all the 
rewards)? 
We could keep a running sum and count, or, equivalently:

[ ]kkkk Qr
k

QQ −
+

+= ++ 11 1
1

This is a common form for update rules:
NewEstimate = OldEstimate + StepSize[Target – OldEstimate]
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Computation
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Tracking a Nonstationary Problem

Choosing       to be a sample average is 
appropriate in a stationary problem, i.e., when 
none of the            change over time,

But not in a nonstationary problem.

kQ

Q*(a)

Better in the nonstationary case is:

Qk +1 = Qk +α rk +1 − Qk[ ]
for constant α,  0 < α ≤ 1

               = (1− α) kQ0 + α (1 −α
i =1

k

∑ )k −i ri

exponential, recency-weighted average



Reinforcement Learning 35

Computation
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Optimistic Initial Values

All methods so far depend on          , i.e., they are 
biased.
Suppose instead we initialize the action values 
optimistically, i.e., on the 10-armed testbed, use

for all a. 

)a(Q0

 )a(Q 50 =

Optimistic initialization can force exploration behavior!
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The Agent-Environment Interface
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The Agent Learns a Policy

ss  whenaa thaty probabilit )a,s(               
iesprobabilit action to  statesfrom mapping a               

:,t step

ttt

t

===π

πat  Policy

Reinforcement learning methods specify how the 
agent changes its policy as a result of experience.
Roughly, the agent’s goal is to get as much reward 
as it can over the long run.
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Getting the Degree of Abstraction Right

Time steps need not refer to fixed intervals of real time.
Actions can be low level (e.g., voltages to motors), or 
high level (e.g., accept a job offer), “mental” (e.g., shift in 
focus of attention), etc.
States can low-level “sensations”, or they can be 
abstract, symbolic, based on memory, or subjective (e.g., 
the state of being “surprised” or “lost”).
An RL agent is not like a whole animal or robot, which 
consist of many RL agents as well as other components.
The environment is not necessarily unknown to the 
agent, only incompletely controllable.
Reward computation is in the agent’s environment 
because the agent cannot change it arbitrarily. 
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Goals and Rewards

Is a scalar reward signal an adequate notion of a 
goal?—maybe not, but it is surprisingly flexible.
A goal should specify what we want to achieve, not 
how we want to achieve it.
A goal must be outside the agent’s direct control—
thus outside the agent.
The agent must be able to measure success:

explicitly;
frequently during its lifespan.
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Returns

  

Suppose the sequence of rewards after step t is :
                         rt +1, rt+ 2 , rt + 3, K
What do we want to maximize?

In general,  

we want to maximize the expected return,  E Rt{ },  for each step t.

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a 
maze. 

 Rt = rt +1 + rt +2 +L + rT ,
where T is a final time step at which a terminal state is 
reached, ending an episode.
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Returns for Continuing Tasks

Continuing tasks: interaction does not have 
natural episodes.  

Discounted return:

  

            Rt = rt +1 +γ rt+ 2 + γ 2rt +3 +L = γ krt + k +1,
k =0

∞

∑
where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted  0 ← γ → 1  farsighted
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An Example

Avoid failure: the pole falling 
beyond a critical angle or the cart 
hitting end of track.

As an episodic task where episode ends upon failure:
reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As  a continuing task with discounted return:
reward  = −1 upon failure; 0 otherwise

⇒   return =  −γ k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.
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Another Example

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Get to the top of the hill
as quickly as possible. 

Return is maximized by minimizing 
number of steps reach the top of the hill. 
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A Unified Notation

In episodic tasks, we number the time steps of each 
episode starting from zero.
We usually do not have distinguish between episodes, so 
we write       instead of         for the state at step t of 
episode j.
Think of each episode as ending in an absorbing state that 
always produces reward of zero:

We can cover all cases by writing

where γ can be 1 only if a zero reward absorbing state is 
always reached.

st j,ts

∑
∞

=
++=

0
1

k
kt

k
t ,rR γ
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The Markov Property

By “the state” at step t, the book means whatever 
information is available to the agent at step t about its 
environment.
The state can include immediate “sensations,” highly 
processed sensations, and structures built up over time 
from sequences of sensations. 
Ideally, a state should summarize past sensations so as to 
retain all “essential” information, i.e., it should have the 
Markov Property:

for all s’, r, and histories st, at, st-1, at-1, …, r1, s0, a0.

{ }
{ }tttt

ttttttt

a,srr,ssPr                                                             

a,s,r,,a,s,r,a,srr,ssPr

=′=

==′=

++

−−++

11

0011111 K
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Markov Decision Processes

If a reinforcement learning task has the Markov 
Property, it is basically a Markov Decision Process
(MDP).
If state and action sets are finite, it is a finite MDP. 
To define a finite MDP, you need to give:

state and action sets
one-step “dynamics” defined by transition 
probabilities:

reward probabilities:

Ps ′ s 
a = Pr st +1 = ′ s st = s,at = a{ }   for all s, ′ s ∈S, a ∈A(s).

Rs ′ s 
a = E rt +1 st = s,at = a,st +1 = ′ s { }   for all s, ′ s ∈S, a ∈A(s).
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An Example Finite MDP

Recycling Robot

At each step, robot has to decide whether it should (1) 
actively search for a can, (2) wait for someone to bring it 
a can, or (3) go to home base and recharge. 
Searching is better but runs down the battery; if runs out 
of power while searching, has to be rescued (which is 
bad).
Decisions made on basis of current energy level: high, 
low.
Reward = number of cans collected
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Recycling Robot MDP
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=

=

search

high low
1,  0

 1–β ,   –3

search

recharge

wait

wait

search1–α ,  R

β ,  R  search

α, R search

1,  R wait
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Transition Table
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Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

∑ 
 
 

 
 
 

The value of a state is the expected return starting 
from that state; depends on the agent’s policy:

The value of taking an action in a state under 
policy π is the expected return starting from that 
state, taking that action, and thereafter following π :

Action - value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ }= Eπ γ krt + k +1 st = s,at = a
k = 0

∞

∑ 
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Bellman Equation for a Policy π

The basic idea: 

  

Rt = rt +1 + γ rt +2 +γ 2rt + 3 +γ 3rt + 4 L

= rt +1 + γ rt +2 + γ rt +3 + γ 2rt + 4 L( )
= rt +1 + γ Rt +1

Vπ (s) = Eπ Rt st = s{ }
= Eπ rt +1 + γ V st +1( ) st = s{ }

So: 

Or, without the expectation operator: 

Vπ (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γ V π( ′ s )[ ]
′ s 

∑
a

∑
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More on the Bellman Equation

Vπ (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γ V π( ′ s )[ ]
′ s 

∑
a

∑

This is a set of equations (in fact, linear), one for each state
The value function for π is its unique solution.

Backup diagrams:

s,as

a

s'

r

a'

s'
r

(b)(a)

for V π for Qπ
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Gridworld

Actions: north, south, east, west; deterministic.
If would take agent off the grid: no move but 
reward = –1
Other actions produce reward = 0, except actions that 
move agent out of special states A and B as shown.

State-value function 
for equiprobable
random policy;
γ = 0.9
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Golf
State is ball location
Reward of –1 for each stroke until the ball is in the hole
Value of a state?
Actions: 

putt (use putter)
driver (use driver)

putt succeeds anywhere on the green
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Optimal Value Functions

π ≥ ′ π     if and only if  Vπ (s) ≥ V ′ π (s)  for all s ∈S
For finite MDPs, policies can be partially ordered: 

There is always at least one (and possibly many)  policies 
that is better than or equal to all the others. This is an 
optimal policy. We denote them all π *.
Optimal policies share the same optimal state-value 
function:

Optimal policies also share the same optimal action-
value function:

V∗ (s) = max
π

Vπ (s)   for all  s ∈S

Q∗(s,a) = max
π

Qπ (s, a)  for all  s ∈S and a ∈A(s)
This is the expected return for taking action a in 
state s and thereafter following an optimal policy.
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Optimal Value Function for Golf

We can hit the ball farther with driver than with 
putter, but with less accuracy
Q*(s,driver) gives the value or using driver first, 
then using whichever actions are best
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Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

s

a

s'

r

(a)

max

V∗ (s) = max
a∈A(s)

Qπ ∗

(s,a)

= max
a∈A(s)

E rt +1 + γ V∗(st +1) st = s, at = a{ }
= max

a∈A(s)
Ps ′ s 

a

′ s 
∑ Rs ′ s 

a + γ V ∗( ′ s )[ ]

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.∗V
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Bellman Optimality Equation for Q*

{ }
[ ]∑

′
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′′′
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∗
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)a,s(QmaxRP

aa,ss)a,s(QmaxrE)a,s(Q

γ

γ 11

s,a

a'

s'
r

(b)

max

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.
*Q
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Why Optimal State-Value Functions are 
Useful

V∗
Any policy that is greedy with respect to is an optimal policy.

V∗Therefore, given     , one-step-ahead search produces 
the long-term optimal actions.

E.g., back to the gridworld:
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What About Optimal Action-Value Functions?

Given      , the agent does not even
have to do a one-step-ahead search:  

Q*

π ∗(s) = arg max
a∈A (s)

Q∗(s,a)
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Solving the Bellman Optimality Equation

Finding an optimal policy by solving the Bellman 
Optimality Equation requires the following:

accurate knowledge of environment dynamics;
we have enough space an time to do the computation;
the Markov Property.

How much space and time do we need?
polynomial in number of states (via dynamic 
programming methods; Chapter 4),
BUT, number of states is often huge (e.g., 
backgammon has about 10**20 states).

We usually have to settle for approximations.
Many RL methods can be understood as approximately 
solving the Bellman Optimality Equation.
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Summary

Agent-environment 
interaction

States
Actions
Rewards

Policy: stochastic rule for 
selecting actions
Return: the function of future 
rewards agent tries to 
maximize
Episodic and continuing 
tasks
Markov Property

Markov Decision Process
Transition probabilities
Expected rewards

Value functions
State-value function for a policy
Action-value function for a 
policy
Optimal state-value function
Optimal action-value function

Optimal value functions
Optimal policies
Bellman Equations
The need for approximation
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