
Reinforcement Learning 1

Reinforcement Learning

http://www.cs.ualberta.ca/~sutton/book/the-book.html

Mainly based on
“Reinforcement Learning –
An Introduction” by Richard
Sutton and Andrew Barto

Slides are mainly based on
the course material provided
by the same authors

Reinforcement Learning 2

Learning from Experience Plays a Role in …

Artificial Intelligence

Control Theory and
Operations ResearchPsychology

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience

Reinforcement Learning 3

What is Reinforcement Learning?

Learning from interaction
Goal-oriented learning
Learning about, from, and while interacting with an
external environment
Learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal

Reinforcement Learning 4

Supervised Learning

Training Info = desired (target) outputs

Supervised Learning
SystemInputs Outputs

Error = (target output – actual output)

Reinforcement Learning 5

Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties”)

RL
SystemInputs Outputs (“actions”)

Objective: get as much reward as possible

Reinforcement Learning 6

Key Features of RL

Learner is not told which actions to take
Trial-and-Error search
Possibility of delayed reward (sacrifice short-term
gains for greater long-term gains)
The need to explore and exploit
Considers the whole problem of a goal-directed
agent interacting with an uncertain environment

Reinforcement Learning 7

Complete Agent

Temporally situated
Continual learning and planning
Object is to affect the environment
Environment is stochastic and uncertain

Environment

actionstate

reward
Agent

Reinforcement Learning 8

Elements of RL

Policy: what to do
Reward: what is good
Value: what is good because it predicts reward
Model: what follows what

Policy

Reward

Value
Model of

environment

Reinforcement Learning 9

An Extended Example: Tic-Tac-Toe

...

...... ...

...

x x

x

x o

x

o

xo

x

x
x

o

o

Assume an imperfect opponent:
he/she sometimes makes mistakes

X X X O XX XO
XO

X

O

X
X X XXO O O O XOX

XO OO

} x’s move

} o’s move

} x’s move

} o’s move

} x’s move

Reinforcement Learning 10

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:
State V(s) – estimated probability of winning

.5 ?
2. Now play lots of games. To

pick our moves, look ahead
one step:

.5 ?
x

.. . .

xxx

o
o

 . .

1 win

. . .

o
o

o
x

x 0 loss

 .
. .

*

current state

. . .

0 draw

. . .

oo

o o
x

x
x

x
o

various possible
next states

Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.

Reinforcement Learning 11

RL Learning Rule for Tic-Tac-Toe

movegreedy our after statethe– s
movegreedy our before statethe– s

′

[])s(V)s(V)s(V)s(V
: a–)s(V toward)s(V each increment We

−′α+←

′ backup

parametersize -step the
. e.g., fraction, positive smalla 1=α

“Exploratory” move

Reinforcement Learning 12

How can we improve this T.T.T. player?

Take advantage of symmetries
representation/generalization
How might this backfire?

Do we need “random” moves? Why?
Do we always need a full 10%?

Can we learn from “random” moves?
Can we learn offline?

Pre-training from self play?
Using learned models of opponent?

. . .

Reinforcement Learning 13

e.g. Generalization

Table Generalizing Function Approximator

State VState V

s
s
s
.
.
.

s

1

2

3

N

Train
here

Reinforcement Learning 14

How is Tic-Tac-Toe Too Easy?

Finite, small number of states
One-step look-ahead is always possible
State completely observable
…

Reinforcement Learning 15

Some Notable RL Applications

TD-Gammon: Tesauro
world’s best backgammon program

Elevator Control: Crites & Barto
high performance down-peak elevator controller

Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin

high performance assignment of radio channels to
mobile telephone calls

…

Reinforcement Learning 16

TD-Gammon
Tesauro, 1992–1995

TD error
Vt+1 −VtEffective branching factor 400

Action selection
by 2–3 ply search

Value

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

Reinforcement Learning 17

Elevator Dispatching
Crites and Barto, 1996

10 floors, 4 elevator cars

STATES: button states; positions,
directions, and motion states of
cars; passengers in cars & in
halls

ACTIONS: stop at, or go by, next
floor

REWARDS: roughly, –1 per time
step for each person waiting

Conservatively about 10 states22

Reinforcement Learning 18

Performance Comparison

Reinforcement Learning 19

Evaluative Feedback

Evaluating actions vs. instructing by giving correct actions

Pure evaluative feedback depends totally on the action taken.
Pure instructive feedback depends not at all on the action taken.

Supervised learning is instructive; optimization is evaluative

Associative vs. Nonassociative:

Associative: inputs mapped to outputs; learn the best
output for each input

Nonassociative: “learn” (find) one best output

n-armed bandit (at least how we treat it) is:

Nonassociative

Evaluative feedback

Reinforcement Learning 20

The n-Armed Bandit Problem

Choose repeatedly from one of n actions; each
choice is called a play
After each play , you get a reward , where

)a(Qa|rE t
*

tt =
ta tr

These are unknown action values
Distribution of depends only on rt at

Objective is to maximize the reward in the long term,
e.g., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions

and then exploit the best of them.

Reinforcement Learning 21

The Exploration/Exploitation Dilemma

Suppose you form estimates

The greedy action at t is

You can’t exploit all the time; you can’t explore all the
time
You can never stop exploring; but you should always
reduce exploring

Qt(a) ≈ Q*(a) action value estimates

at
* = argmax

a
Qt(a)

at = at
* ⇒ exploitation

at ≠ at
* ⇒ exploration

Reinforcement Learning 22

Action-Value Methods

Methods that adapt action-value estimates and
nothing else, e.g.: suppose by the t-th play, action
had been chosen times, producing rewards
then

a

k
t k

rrr
)a(Q a

+++
=

L21

ka ,,r,r K21

“sample average”

)a(Q)a(Qlim *
tka

=
∞→

a
,r

ak

Reinforcement Learning 23

ε-Greedy Action Selection

Greedy action selection:

ε-Greedy:

)a(Qmaxargaa ta

*
tt ==

{ at
* with probability 1 − ε

random action with probability ε
at =

... the simplest way to try to balance exploration and
exploitation

Reinforcement Learning 24

10-Armed Testbed

n = 10 possible actions
Each is chosen randomly from a normal
distribution:
each is also normal:
1000 plays
repeat the whole thing 2000 times and average the results
Evaluative versus instructive feedback

)),a(Q(N t
* 1

),(N 10
rt

)a(Q*

Reinforcement Learning 25

ε-Greedy Methods on the 10-Armed Testbed

 = 0 (greedy)

 = 0.01

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Plays

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

 = 0.1

Plays

 = 0.01

 = 0.1

Reinforcement Learning 26

Softmax Action Selection

Softmax action selection methods grade action probs.
by estimated values.
The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play t with probability

where τ is the “computational temperature”

,
e

e n

b
)b(Q

)a(Q

t

t

∑ =1
τ

τ

Reinforcement Learning 27

Evaluation Versus Instruction

Suppose there are K possible actions and you select
action number k.
Evaluative feedback would give you a single score f,
say 7.2.
Instructive information, on the other hand, would say
that action k’, which is eventually different from
action k, have actually been correct.
Obviously, instructive feedback is much more
informative, (even if it is noisy).

Reinforcement Learning 28

Binary Bandit Tasks

at = 1 or at = 2Suppose you have just two actions:

rt = success or rt = failureand just two rewards:

Then you might infer a target or desired action:

{ at if success
the other action if failure

dt =

and then always play the action that was most often
the target

Call this the supervised algorithm.
It works fine on deterministic tasks but is
suboptimal if the rewards are stochastic.

Reinforcement Learning 29

Contingency Space

The space of all possible binary bandit tasks:

Reinforcement Learning 30

Linear Learning Automata

Let π t(a) = Pr at = a{ } be the only adapted parameter

LR –I (Linear, reward - inaction)
 On success : π t +1(at) = π t (at) + α (1 − π t(at)) 0 < α < 1
 (the other action probs. are adjusted to still sum to 1)
 On failure : no change

LR -P (Linear, reward - penalty)
 On success : π t +1(at) = π t (at) + α (1 − π t(at)) 0 < α < 1
 (the other action probs. are adjusted to still sum to 1)
 On failure : π t +1(at) = π t (at) + α (0 − π t (at)) 0 < α < 1

For two actions, a stochastic, incremental version of the supervised
algorithm

Reinforcement Learning 31

Performance on Binary Bandit Tasks A and B

Reinforcement Learning 32

Incremental Implementation

Recall the sample average estimation method:

Qk =

r1 + r2 +Lrk

k
The average of the first k rewards is
(dropping the dependence on):a

Can we do this incrementally (without storing all the
rewards)?
We could keep a running sum and count, or, equivalently:

[]kkkk Qr
k

QQ −
+

+= ++ 11 1
1

This is a common form for update rules:
NewEstimate = OldEstimate + StepSize[Target – OldEstimate]

Reinforcement Learning 33

Computation

()

[]

1

1
1

1
1

1

1

1
1

1
1

1
1

1
1

Stepsize constant or changing with time

k

k i
i

k

k i
i

k k k k

k k k

Q r
k

r r
k

r kQ Q Q
k

Q r Q
k

+

+
=

+
=

+

+

=
+

 
= + +  

= + + −
+

= + −
+

∑

∑

Reinforcement Learning 34

Tracking a Nonstationary Problem

Choosing to be a sample average is
appropriate in a stationary problem, i.e., when
none of the change over time,

But not in a nonstationary problem.

kQ

Q*(a)

Better in the nonstationary case is:

Qk +1 = Qk +α rk +1 − Qk[]
for constant α, 0 < α ≤ 1

 = (1− α) kQ0 + α (1 −α
i =1

k

∑)k −i ri

exponential, recency-weighted average

Reinforcement Learning 35

Computation

1 1

1 1

1

2
1 2

0
1

2

1 1

Use
[]

Then
[]

(1)

(1) (1)

(1) (1)

In general : convergence if

() and ()

1satisfied for but not for fi

k k k k

k k k k

k k

k k k

k
k k i

i
i

k k
k k

k

Q Q r Q

Q Q r Q
r Q

r r Q

Q r

a a

k

α

α
α α

α α α α

α α α

α α

α

+ +

− −

−

− −

−

=

∞ ∞

= =

= + −

= + −
= + −

= + − + −

= − + −

= ∞ < ∞

=

∑

∑ ∑

xed α

11
1

=−∑
=

−
k

i

ik)(αα

Notes:

1.

2. Step size
parameter
after the k-th
application of
action a

Reinforcement Learning 36

Optimistic Initial Values

All methods so far depend on , i.e., they are
biased.
Suppose instead we initialize the action values
optimistically, i.e., on the 10-armed testbed, use

for all a.

)a(Q0

)a(Q 50 =

Optimistic initialization can force exploration behavior!

Reinforcement Learning 37

The Agent-Environment Interface

1

1

210

+

+ ℜ∈
∈

∈
=

t

t

tt

t

s : statenext resulting and
r :reward resulting gets

)s(Aa :t stepat action produces
Ss :t stepat stateobserves Agent

,,,t : stepstime discrete at interact tenvironmen and Agent K

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

Reinforcement Learning 38

The Agent Learns a Policy

ss whenaa thaty probabilit)a,s(
iesprobabilit action to statesfrom mapping a

:,t step

ttt

t

===π

πat Policy

Reinforcement learning methods specify how the
agent changes its policy as a result of experience.
Roughly, the agent’s goal is to get as much reward
as it can over the long run.

Reinforcement Learning 39

Getting the Degree of Abstraction Right

Time steps need not refer to fixed intervals of real time.
Actions can be low level (e.g., voltages to motors), or
high level (e.g., accept a job offer), “mental” (e.g., shift in
focus of attention), etc.
States can low-level “sensations”, or they can be
abstract, symbolic, based on memory, or subjective (e.g.,
the state of being “surprised” or “lost”).
An RL agent is not like a whole animal or robot, which
consist of many RL agents as well as other components.
The environment is not necessarily unknown to the
agent, only incompletely controllable.
Reward computation is in the agent’s environment
because the agent cannot change it arbitrarily.

Reinforcement Learning 40

Goals and Rewards

Is a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.
A goal should specify what we want to achieve, not
how we want to achieve it.
A goal must be outside the agent’s direct control—
thus outside the agent.
The agent must be able to measure success:

explicitly;
frequently during its lifespan.

Reinforcement Learning 41

Returns

Suppose the sequence of rewards after step t is :
 rt +1, rt+ 2 , rt + 3, K
What do we want to maximize?

In general,

we want to maximize the expected return, E Rt{ }, for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a
maze.

 Rt = rt +1 + rt +2 +L + rT ,
where T is a final time step at which a terminal state is
reached, ending an episode.

Reinforcement Learning 42

Returns for Continuing Tasks

Continuing tasks: interaction does not have
natural episodes.

Discounted return:

 Rt = rt +1 +γ rt+ 2 + γ 2rt +3 +L = γ krt + k +1,
k =0

∞

∑
where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted 0 ← γ → 1 farsighted

Reinforcement Learning 43

An Example

Avoid failure: the pole falling
beyond a critical angle or the cart
hitting end of track.

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure
⇒ return = number of steps before failure

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise

⇒ return = −γ k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

Reinforcement Learning 44

Another Example

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Get to the top of the hill
as quickly as possible.

Return is maximized by minimizing
number of steps reach the top of the hill.

Reinforcement Learning 45

A Unified Notation

In episodic tasks, we number the time steps of each
episode starting from zero.
We usually do not have distinguish between episodes, so
we write instead of for the state at step t of
episode j.
Think of each episode as ending in an absorbing state that
always produces reward of zero:

We can cover all cases by writing

where γ can be 1 only if a zero reward absorbing state is
always reached.

st j,ts

∑
∞

=
++=

0
1

k
kt

k
t ,rR γ

Reinforcement Learning 46

The Markov Property

By “the state” at step t, the book means whatever
information is available to the agent at step t about its
environment.
The state can include immediate “sensations,” highly
processed sensations, and structures built up over time
from sequences of sensations.
Ideally, a state should summarize past sensations so as to
retain all “essential” information, i.e., it should have the
Markov Property:

for all s’, r, and histories st, at, st-1, at-1, …, r1, s0, a0.

{ }
{ }tttt

ttttttt

a,srr,ssPr

a,s,r,,a,s,r,a,srr,ssPr

=′=

==′=

++

−−++

11

0011111 K

Reinforcement Learning 47

Markov Decision Processes

If a reinforcement learning task has the Markov
Property, it is basically a Markov Decision Process
(MDP).
If state and action sets are finite, it is a finite MDP.
To define a finite MDP, you need to give:

state and action sets
one-step “dynamics” defined by transition
probabilities:

reward probabilities:

Ps ′ s
a = Pr st +1 = ′ s st = s,at = a{ } for all s, ′ s ∈S, a ∈A(s).

Rs ′ s
a = E rt +1 st = s,at = a,st +1 = ′ s { } for all s, ′ s ∈S, a ∈A(s).

Reinforcement Learning 48

An Example Finite MDP

Recycling Robot

At each step, robot has to decide whether it should (1)
actively search for a can, (2) wait for someone to bring it
a can, or (3) go to home base and recharge.
Searching is better but runs down the battery; if runs out
of power while searching, has to be rescued (which is
bad).
Decisions made on basis of current energy level: high,
low.
Reward = number of cans collected

Reinforcement Learning 49

Recycling Robot MDP

{ }
{ }

{ }rechargewaitsearchlow
waitsearchhigh

lowhigh

,,)(A
,)(A

,S

=
=

=

waitsearch

wait

search

RR
 waiting whilecans of no. expected R
 searching whilecans of no. expected R

>

=

=

search

high low
1, 0

 1–β , –3

search

recharge

wait

wait

search1–α , R

β , R search

α, R search

1, R wait

1, R wait

Reinforcement Learning 50

Transition Table

Reinforcement Learning 51

Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

∑







The value of a state is the expected return starting
from that state; depends on the agent’s policy:

The value of taking an action in a state under
policy π is the expected return starting from that
state, taking that action, and thereafter following π :

Action - value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ }= Eπ γ krt + k +1 st = s,at = a
k = 0

∞

∑







Reinforcement Learning 52

Bellman Equation for a Policy π

The basic idea:

Rt = rt +1 + γ rt +2 +γ 2rt + 3 +γ 3rt + 4 L

= rt +1 + γ rt +2 + γ rt +3 + γ 2rt + 4 L()
= rt +1 + γ Rt +1

Vπ (s) = Eπ Rt st = s{ }
= Eπ rt +1 + γ V st +1() st = s{ }

So:

Or, without the expectation operator:

Vπ (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γ V π(′ s)[]
′ s

∑
a

∑

Reinforcement Learning 53

Reinforcement Learning 54

More on the Bellman Equation

Vπ (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γ V π(′ s)[]
′ s

∑
a

∑

This is a set of equations (in fact, linear), one for each state
The value function for π is its unique solution.

Backup diagrams:

s,as

a

s'

r

a'

s'
r

(b)(a)

for V π for Qπ

Reinforcement Learning 55

Gridworld

Actions: north, south, east, west; deterministic.
If would take agent off the grid: no move but
reward = –1
Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

State-value function
for equiprobable
random policy;
γ = 0.9

Reinforcement Learning 56

Golf
State is ball location
Reward of –1 for each stroke until the ball is in the hole
Value of a state?
Actions:

putt (use putter)
driver (use driver)

putt succeeds anywhere on the green

Reinforcement Learning 57

Optimal Value Functions

π ≥ ′ π if and only if Vπ (s) ≥ V ′ π (s) for all s ∈S
For finite MDPs, policies can be partially ordered:

There is always at least one (and possibly many) policies
that is better than or equal to all the others. This is an
optimal policy. We denote them all π *.
Optimal policies share the same optimal state-value
function:

Optimal policies also share the same optimal action-
value function:

V∗ (s) = max
π

Vπ (s) for all s ∈S

Q∗(s,a) = max
π

Qπ (s, a) for all s ∈S and a ∈A(s)
This is the expected return for taking action a in
state s and thereafter following an optimal policy.

Reinforcement Learning 58

Optimal Value Function for Golf

We can hit the ball farther with driver than with
putter, but with less accuracy
Q*(s,driver) gives the value or using driver first,
then using whichever actions are best

Reinforcement Learning 59

Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

s

a

s'

r

(a)

max

V∗ (s) = max
a∈A(s)

Qπ ∗

(s,a)

= max
a∈A(s)

E rt +1 + γ V∗(st +1) st = s, at = a{ }
= max

a∈A(s)
Ps ′ s

a

′ s
∑ Rs ′ s

a + γ V ∗(′ s)[]

The relevant backup diagram:

is the unique solution of this system of nonlinear equations.∗V

Reinforcement Learning 60

Bellman Optimality Equation for Q*

{ }
[]∑

′

∗

′′′

+
∗

′+
∗

′′+=

==′+=

s a

a
ss

a
ss

tttat

)a,s(QmaxRP

aa,ss)a,s(QmaxrE)a,s(Q

γ

γ 11

s,a

a'

s'
r

(b)

max

The relevant backup diagram:

is the unique solution of this system of nonlinear equations.
*Q

Reinforcement Learning 61

Why Optimal State-Value Functions are
Useful

V∗
Any policy that is greedy with respect to is an optimal policy.

V∗Therefore, given , one-step-ahead search produces
the long-term optimal actions.

E.g., back to the gridworld:

Reinforcement Learning 62

What About Optimal Action-Value Functions?

Given , the agent does not even
have to do a one-step-ahead search:

Q*

π ∗(s) = arg max
a∈A (s)

Q∗(s,a)

Reinforcement Learning 63

Solving the Bellman Optimality Equation

Finding an optimal policy by solving the Bellman
Optimality Equation requires the following:

accurate knowledge of environment dynamics;
we have enough space an time to do the computation;
the Markov Property.

How much space and time do we need?
polynomial in number of states (via dynamic
programming methods; Chapter 4),
BUT, number of states is often huge (e.g.,
backgammon has about 10**20 states).

We usually have to settle for approximations.
Many RL methods can be understood as approximately
solving the Bellman Optimality Equation.

Reinforcement Learning 64

Summary

Agent-environment
interaction

States
Actions
Rewards

Policy: stochastic rule for
selecting actions
Return: the function of future
rewards agent tries to
maximize
Episodic and continuing
tasks
Markov Property

Markov Decision Process
Transition probabilities
Expected rewards

Value functions
State-value function for a policy
Action-value function for a
policy
Optimal state-value function
Optimal action-value function

Optimal value functions
Optimal policies
Bellman Equations
The need for approximation

	Reinforcement Learning
	Learning from Experience Plays a Role in …
	What is Reinforcement Learning?
	Supervised Learning
	Reinforcement Learning
	Key Features of RL
	Complete Agent
	Elements of RL
	An Extended Example: Tic-Tac-Toe
	An RL Approach to Tic-Tac-Toe
	RL Learning Rule for Tic-Tac-Toe
	How can we improve this T.T.T. player?
	e.g. Generalization
	How is Tic-Tac-Toe Too Easy?
	Some Notable RL Applications
	TD-Gammon
	Elevator Dispatching
	Performance Comparison
	Evaluative Feedback
	The n-Armed Bandit Problem
	The Exploration/Exploitation Dilemma
	Action-Value Methods
	e-Greedy Action Selection
	10-Armed Testbed
	e-Greedy Methods on the 10-Armed Testbed
	Softmax Action Selection
	Evaluation Versus Instruction
	Binary Bandit Tasks
	Contingency Space
	Linear Learning Automata
	Performance on Binary Bandit Tasks A and B
	Incremental Implementation
	Computation
	Tracking a Nonstationary Problem
	Computation
	Optimistic Initial Values
	The Agent-Environment Interface
	The Agent Learns a Policy
	Getting the Degree of Abstraction Right
	Goals and Rewards
	Returns
	Returns for Continuing Tasks
	An Example
	Another Example
	A Unified Notation
	The Markov Property
	Markov Decision Processes
	An Example Finite MDP
	Recycling Robot MDP
	Transition Table
	Value Functions
	Bellman Equation for a Policy p
	
	More on the Bellman Equation
	Gridworld
	Golf
	Optimal Value Functions
	Optimal Value Function for Golf
	Bellman Optimality Equation for V*
	Bellman Optimality Equation for Q*
	Why Optimal State-Value Functions are Useful
	What About Optimal Action-Value Functions?
	Solving the Bellman Optimality Equation
	Summary

