
Advanced AI Techniques (WS04)

Exercise sheet 5

Deadline: Tuesday, December 7, 2004

Suppose we want to determine the average annual temperature at a particular
location on earth over a series of years. To make it interesting, suppose the
years we are concerned with lie in the distant past, before thermometers were
invented. Since we can t go back in time, we instead look for indirect evidence
of the temperature. To simplify the problem, we only consider two annual
temperatures, hot and cold. Suppose that modern evidence indicates that the
probability of a hot year followed by another hot year is 0.7 and the probability
that a cold year is followed by another cold year is 0.6. The information so far
can be summarized as:

h c

h
[

0.7 0.3
0.4 0.6

]

c

where h is hot and c is cold. Also suppose that current research indicates a
correlation between the size of tree growth rings and temperature. For simplic-
ity, we only consider three different tree ring sizes, small, medium and large,
or s, m and l. Conceivably, the probabilistic relationship between temperature
and tree ring sizes could be given by

s m l

h
[

0.1 0.4 0.5
0.7 0.2 0.1

]

c

Hidden Markov models are good choice in this situation because the states h

and c are hidden since we cannot directly observe the temperature in the past.
The transition matrix A and the observation matrix B are

A =

(

0.7 0.3
0.4 0.6

)

, B =

(

0.1 0.4 0.5
0.7 0.2 0.1

)

.

Assume that there is additional evidence that the initial state distribution is

π = (0.6, 0.4) ,

i.e., a hot year is apriori more likely. Now consider a particular four-year period
of interest where we observe the series of tree rings

s, m, s, l .
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Exercise 1 (6 points) As discussed in the lecture, the forward procedure is a
dynamic programming approach for efficiently evaluating observation sequences
with hidden Markov model (HMMs). In order to compute P (o1, o2, . . . , on | M)
for a given observation sequence o1, o2, . . . , on given a HMM M , a dynamic
programming approach is employed. More precisely, the so called forward prob-

ability

P (o1, o2, . . . , ot, qt = s | M)

is iteratively computed for t = 1, 2, . . . , n. In the formula, qt = 1 denotes that
the system is in states s at time t.

As shown in the lecture, this leads to the following iterative formulae:

1. Initialization: α1(s) = πs · bs(o1)

2. Induction: αt+1(s) =
[
∑

s′
αt(s

′) · as′s

]

· bs(ot+1)

3. Termination: P (o1o2 . . . on | M) =
∑

s
αn(s)

Compute the probability of s, m, s, l using the forward procedure, list all α-
values, and show the trellis induced.

Exercise 2 (4 points) The probability P (o1o2 . . . on | M) can be also com-
puted in a backward manner. The backward procedure computes the so called
backward probability:

βt(s) = P (ot+1, ot+2, . . . , on | qt = s, M) .

for t = n, n − 1, . . . , 0 as follows:

1. Initialization: βn(s) = 1

2. Induction: βt(s) =
∑

s′
ass′ · bs′(ot+1) · βt+1(s

′)

3. Termination: P (o1o2 . . . on | M) =
∑

s
πs · bs′(o1) · β1(s)

Derive the iterative formulae for the backward procedure.

Exercise 3 (2 points) Having a forward procedure, it is straightforward
to decode an observation sequence o1, o2, . . . , on given a HMM M , i.e., com-
puting the hidden state sequence s1, s2, . . . , sn which most likely generated
o1, o2, . . . , on. Instead of summing over all αt(s), one basically selects the max-
imum. This is what the so-called Viterbi algorithm does. Decode s, m, s, l.
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