Advanced AI Techniques (WS04)

Exercise sheet 5
Deadline: Tuesday, December 7, 2004

Suppose we want to determine the average annual temperature at a particular location on earth over a series of years. To make it interesting, suppose the years we are concerned with lie in the distant past, before thermometers were invented. Since we can t go back in time, we instead look for indirect evidence of the temperature. To simplify the problem, we only consider two annual temperatures, hot and cold. Suppose that modern evidence indicates that the probability of a hot year followed by another hot year is 0.7 and the probability that a cold year is followed by another cold year is $\mathbf{0 . 6}$. The information so far can be summarized as:
$\left.\begin{array}{c} \\ h \\ c\end{array} \begin{array}{cc}h & c \\ {\left[\begin{array}{c}0.7\end{array}\right.} & 0.3 \\ 0.4 & 0.6\end{array}\right]$
where h is hot and c is cold. Also suppose that current research indicates a correlation between the size of tree growth rings and temperature. For simplicity, we only consider three different tree ring sizes, small, medium and large, or s, m and l. Conceivably, the probabilistic relationship between temperature and tree ring sizes could be given by
h

c | s | m | l |
| :---: | :---: | :---: |
| $\left[\begin{array}{ccc}0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1\end{array}\right]$ | | |

Hidden Markov models are good choice in this situation because the states h and c are hidden since we cannot directly observe the temperature in the past. The transition matrix A and the observation matrix B are

$$
A=\left(\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right), B=\left(\begin{array}{ccc}
0.1 & 0.4 & 0.5 \\
0.7 & 0.2 & 0.1
\end{array}\right)
$$

Assume that there is additional evidence that the initial state distribution is

$$
\pi=(0.6,0.4),
$$

i.e., a hot year is apriori more likely. Now consider a particular four-year period of interest where we observe the series of tree rings

$$
s, m, s, l
$$

Exercise 1 (6 points) As discussed in the lecture, the forward procedure is a dynamic programming approach for efficiently evaluating observation sequences with hidden Markov model (HMMs). In order to compute $P\left(o_{1}, o_{2}, \ldots, o_{n} \mid M\right)$ for a given observation sequence $o_{1}, o_{2}, \ldots, o_{n}$ given a HMM M, a dynamic programming approach is employed. More precisely, the so called forward probability

$$
P\left(o_{1}, o_{2}, \ldots, o_{t}, q_{t}=s \mid M\right)
$$

is iteratively computed for $t=1,2, \ldots, n$. In the formula, $q_{t}=1$ denotes that the system is in states s at time t.

As shown in the lecture, this leads to the following iterative formulae:

1. Initialization: $\alpha_{1}(s)=\pi_{s} \cdot b_{s}\left(o_{1}\right)$
2. Induction: $\alpha_{t+1}(s)=\left[\sum_{s^{\prime}} \alpha_{t}\left(s^{\prime}\right) \cdot a_{s^{\prime} s}\right] \cdot b_{s}\left(o_{t+1}\right)$
3. Termination: $P\left(o_{1} o_{2} \ldots o_{n} \mid M\right)=\sum_{s} \alpha_{n}(s)$

Compute the probability of s, m, s, l using the forward procedure, list all α values, and show the trellis induced.

Exercise 2 (4 points) The probability $P\left(o_{1} o_{2} \ldots o_{n} \mid M\right)$ can be also computed in a backward manner. The backward procedure computes the so called backward probability:

$$
\beta_{t}(s)=P\left(o_{t+1}, o_{t+2}, \ldots, o_{n} \mid q_{t}=s, M\right) .
$$

for $t=n, n-1, \ldots, 0$ as follows:

1. Initialization: $\beta_{n}(s)=1$
2. Induction: $\beta_{t}(s)=\sum_{s^{\prime}} a_{s s^{\prime}} \cdot b_{s^{\prime}}\left(o_{t+1}\right) \cdot \beta_{t+1}\left(s^{\prime}\right)$
3. Termination: $P\left(o_{1} o_{2} \ldots o_{n} \mid M\right)=\sum_{s} \pi_{s} \cdot b_{s^{\prime}}\left(o_{1}\right) \cdot \beta_{1}(s)$

Derive the iterative formulae for the backward procedure.
Exercise 3 (2 points) Having a forward procedure, it is straightforward to decode an observation sequence $o_{1}, o_{2}, \ldots, o_{n}$ given a HMM M, i.e., computing the hidden state sequence $s_{1}, s_{2}, \ldots, s_{n}$ which most likely generated $o_{1}, o_{2}, \ldots, o_{n}$. Instead of summing over all $\alpha_{t}(s)$, one basically selects the maximum. This is what the so-called Viterbi algorithm does. Decode s, m, s, l.

