Advanced AI Techniques

I. Bayesian Networks / 3. Structure Learning (2/3)

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Institute for Computer Science
University of Freiburg
http://www.informatik.uni-freiburg.de/

1. Checking Probabilistic Independencies

2. Markov Equivalence and DAG patterns

3. PC Algorithm

There are three types of structure learning algorithms for Bayesian networks:

1. constrained-based learning (e.g., PC),
2. searching with a target function (e.g., K2),
3. hybrid methods (e.g., sparse candidate).

Lemma 1 (Edge Criterion). Let $G:=(V, E)$ be a DAG and $X, Y \in V$. Then it is equivalent:
(i) X and Y cannot be separated by any \mathcal{Z}, i.e.,

$$
\neg I_{G}(X, Y \mid \mathcal{Z}) \quad \forall \mathcal{Z} \subseteq V \backslash\{X, Y\}
$$

(ii) There is an edge between X and Y, i.e.,

$$
(X, Y) \in E \text { or }(Y, X) \in E
$$

Definition 1. Any $\mathcal{Z} \subseteq V \backslash\{X, Y\}$ with $I_{G}(X, Y \mid \mathcal{Z})$ is called a separator of X and Y.

$$
\operatorname{Sep}(X, Y):=\left\{\mathcal{Z} \subseteq V \backslash\{X, Y\} \mid I_{G}(X, Y \mid \mathcal{Z})\right\}
$$

```
separators-basic(set of variables \(V\), independency relation \(I\) ) :
Allocate \(S: \mathcal{P}^{2}(V) \rightarrow \mathcal{P}(V) \cup\{\) none \(\}\)
for \(\{X, Y\} \subseteq V \underline{\text { do }}\)
    \(S(\{X, Y\}):=\) none
    \(\underline{\text { for }} T \subseteq V \backslash\{X, Y\} \underline{\text { do }}\)
        if \(I(X, Y \mid T)\)
            \(S(\{X, Y\}):=T\)
            break
            fi
        od
od
return \(S\)
```

Figure 1: Compute a separator for each pair of variables.

Let I be the following independency structure:

$$
I(A, D \mid C), \quad I(A, D \mid\{C, B\}), \quad I(B, D)
$$

Then we can compute the following separators:

$$
\begin{aligned}
S(A, B) & :=\text { none } \\
S(A, C) & :=\text { none } \\
S(A, D) & :=\{C\} \\
S(B, C) & :=\text { none } \\
S(B, D) & :=\emptyset \\
S(C, D) & :=\text { none }
\end{aligned}
$$

Thus, the skeleton of the Bayesian Network representing I looks like

Lemma 2 (Uncoupled Head-to-head Meeting Criterion). Let

 $G:=(V, E)$ be a DAG, $X, Y, Z \in V$ with

Then it is equivalent:
(i) $X \rightarrow Z \leftarrow Y$ is an uncoupled head-to-head meeting, i.e.,

$$
(X, Z),(Y, Z) \in E,(X, Y),(Y, X) \notin E
$$

(ii) Z is not contained in any separator of X and Y, i.e.,

$$
Z \notin S \quad \forall S \in \operatorname{Sep}(X, Y)
$$

(iii) Z is not contained in at least one separator of X and Y, i.e.,

$$
Z \notin S \quad \exists S \in \operatorname{Sep}(X, Y)
$$

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2004

Advanced AI Techniques / 3. PC Algorithm
Computing Skeleton and V-structure

```
vstructure(set of variables V,independency relation I) :
S:= separators(V,I)
G:= (V,E) with E:= {{X,Y}|S({X,Y})= none}
for }X,Y,Z\inV\mathrm{ with }X-Z-Y,X\not=Y\underline{\mathbf{do}
        if }Z\not\inS(X,Y
        orient }X-Z-Y as X->Z\leftarrow
        fi
    od
    return G
```

Figure 2: Compute skeleton and v-structure.

1 learn-structure-pc(set of variables V, independency relation I):
${ }_{2} G:=\operatorname{vstructure}(V, I)$
3 saturate (G)
4 return G
Figure 3: Learn structure of a Bayesian Network (SGS/PC algorithm, [SGS00]).

Example / $2 / 3$ - Computing the V-Structure

Separators:
$S(A, B):=$ none
$S(A, C):=$ none
$S(A, D):=\{C\}$
$S(B, C):=$ none
$S(B, D):=\emptyset$
$S(C, D):=$ none

Checking $A-C-D$:

Skeleton:

Checking $B-C-D$:

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2004

Advanced AI Techniques / 3. PC Algorithm

Example / 3/3 - Saturating

Skeleton and v-structure:

Saturating:

Let there be n variables.
For each of the $\binom{n}{2}$ pairs of variables, there are 2^{n-2} candidates for possible separators.

$$
\text { number of } I \text {-tests }=\binom{n}{2} 2^{n-2}
$$

Example: $n=4$:

$$
\binom{n}{2} 2^{n-2}=\binom{4}{2} 2^{2}=6 \cdot 4=24
$$

If we start with small separators and stop once a separator has been found, we still have to check

$$
4 \cdot(1+2+1)+1 \cdot(1+2)+1 \cdot 1=20
$$

Can we reduce the number of tests for a given pair of variable by reusing results for other pairs of variables?

Lemma 3. Let $G:=(V, E)$ be a DAG and $X, Y \in V$ separated. Then

$$
I(X, Y \mid \mathrm{pa}(X)) \text { or } \quad I(X, Y \mid \mathrm{pa}(Y))
$$

As we do not know directions of edges at the the skeleton recovery step, we use the weaker result:

$$
I(X, Y \mid \operatorname{fan}(X)) \text { or } \quad I(X, Y \mid \operatorname{fan}(Y))
$$

। separators-remove-edges(separator map S, skeleton graph G, independency relation I)
$i:=0$
$\underline{\text { while }} \exists X \in V:\left|\operatorname{fan}_{G}(X)\right|>i \underline{\text { do }}$
for $\{X, Y\} \in E$ with $\operatorname{fan}_{G}(X) \mid>i$ or $\operatorname{fan}_{G}(Y) \mid>i \underline{\text { do }}$
for $T \in \mathcal{P}^{i}\left(\operatorname{fan}_{G}(X) \backslash\{Y\}\right) \cup \mathcal{P}^{i}\left(\operatorname{fan}_{G}(Y) \backslash\{X\}\right) \underline{\text { do }}$
if $I(X, Y \mid T)$
$S(\{X, Y\}):=T$
$E:=E \backslash\{\{X, Y\}\}$
break
fi
od
od
$i:=i+1$
od
return S
separators-interlaced(set of variables V, independency relation I) :
Allocate $S: \mathcal{P}^{2}(V) \rightarrow \mathcal{P}(V) \cup\{$ none $\}$
$S(\{X, Y\}):=$ none $\quad \forall\{X, Y\} \subseteq V$
$G:=(V, E)$ with $E:=\mathcal{P}^{2}(V)$
separators-remove-edges (S, G, I)
return S

Figure 4: Compute a separator for each pair of variables.
Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany,

Advanced AI Techniques / 3. PC Algorithm
Example / Computing the Separators (1/3)
$i=0$:
$A, B, T=\emptyset:-$
$D, T=\emptyset: \quad D(\{B, D\})=\emptyset$
$C, T=\emptyset:-$
$D, T=\emptyset:-$
$B, C, T=\emptyset:-$
$C, D, T=\emptyset:-$

$$
I(A, D \mid C), \quad I(A, D \mid\{C, B\}), \quad I(B, D)
$$

initial graph:

after update for B, D :

Example / Computing the Separators (2/3)

$$
I(A, D \mid C), \quad I(A, D \mid\{C, B\}), \quad I(B, D)
$$

$i=1$:
$A, B, T=\{C\},\{D\}:-$
$C, T=\{B\},\{D\}:-$
$D, T=\{B\},\{C\}: S(\{A, D\})=\{C\}$
$B, C, T=\{A\},\{D\}$:
$C, D, T=\{A\},\{B\}:$ \qquad
after update for B, D :

after update for A, D :

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004
Advanced AI Techniques / 3. PC Algorithm
Example / Computing the Separators (3/3)

$$
I(A, D \mid C), \quad I(A, D \mid\{C, B\}), \quad I(B, D)
$$

$i=2$:
$A, C, T=\{B, D\}:-$
$B, C, T=\{A, D\}:-$
$C, D, T=\{A, B\}:-$
total: 19 I-tests.
after update for A, D :

SGS/PC with separators-basic is called SGS algorithm ([SGS00], 1990).

SGS/PC with separators-interlaced is called PC algorithm ([SGS00], 1991).

Implementations are available:

- in Tetrad
http://www.phil.cmu.edu/projects/tetrad/ (class files \& javadocs, no sources)
- in Hugin (commercial).

Let I be the following independency structure:

$$
I(A, D \mid B), \quad I(B, D)
$$

PC computes the following DAG pattern:

But this is not even a representation of I, as it implies

$$
I_{G}(A, D \mid \emptyset)
$$

PC computes the DAG pattern of an independency relation
if there exists one at all !

Remember: not any independency relation has a faithful DAG representation.

But how do we know if an independency relation has a faithful DAG representation?

There is no easy way to decide if a given independency relation has a faithful DAG representation.

So just check ex-post if the DAG pattern we have found is a faithful representation.

Check:

1. compute all $I_{G}(X, Y \mid \mathcal{Z})$ and check if $I(X, Y \mid \mathcal{Z})$ (representation),
2. check for each $I(X, Y \mid \mathcal{Z})$ if $I_{G}(X, Y \mid \mathcal{Z})$ (faithfulness).

As there is no easy way to enumerate $I_{G}(X, Y \mid \mathcal{Z})$ for a DAG pattern G directly, we draw a representative H and then enumerate $I_{H}(X, Y \mid \mathcal{Z})$ (remember that $I_{H}=I_{G}$).

```
draw-representative(DAG pattern G) :
saturate (G)
while }G\mathrm{ has unoriented edges do
4
5
od
return G
```

Figure 5: Draw a representative of a DAG pattern.

Here, rule 4 is necessary in saturate.

Start with DAG pattern

orient it as $X \rightarrow W$. Then rule 4 has to be applied to saturate the resulting DAG pattern

step 1a: saturate.

step 2a: saturate.

step 3a: saturate.

step 1b: orient any unoriented edge:

step 2 b : orient any unoriented edge:

done.

If $I=I_{p}$ the probabilistic independency relation of a JPD p, then for (1) it suffices to check the Markov property, i.e.,

$$
\text { for all } X \text { check if } I_{p}(X, \operatorname{nondesc}(X) \backslash \operatorname{pa}(X) \mid \operatorname{pa}(X))
$$

It even suffices to check for any topological ordering $\sigma=\left(X_{1}, \ldots, X_{n}\right)$ if

$$
I_{p}(\sigma(i), \sigma(\{1, \ldots, i-1\}) \backslash \mathrm{pa}(\sigma(i)) \mid \operatorname{pa}(\sigma(i)))
$$

separators-interlaced computes separators top-down by

- starting with a complete graph and then
- successively thining the graph.

Therefore, we have to start checking with lots of candidates for possible separators.

Advanced AI Techniques / 3. PC Algorithm

A Third Method to Compute Separators

```
separators-add-edges(separator map \(S\), skeleton graph \(G\), independency relation \(I\) ) :
\(S(\{X, Y\}):=\operatorname{argmin}_{T \subseteq \operatorname{fan}_{G}(X), T \subseteq \operatorname{fan}_{G}(Y)} g(X, Y, T) \quad \forall\{X, Y\} \in \mathcal{P}^{2}(V)\)
\(\left\{X_{0}, Y_{0}\right\}:=\operatorname{argmax}_{\{X, Y\} \in \mathcal{P}^{2}(V)} g(X, Y, S(\{X, Y\}))\)
while \(\neg I\left(X_{0}, Y_{0} \mid S\left(\left\{X_{0}, Y_{0}\right\}\right)\right) \underline{\text { do }}\)
    \(E:=E \cup\left\{\left\{X_{0}, Y_{0}\right\}\right\}\)
    \(S\left(\left\{X_{0}, Y_{0}\right\}\right):=\) none
    \(S(\{X, Y\}):=\operatorname{argmin}_{T \subseteq \operatorname{fan}_{G}(X), T \subseteq \operatorname{fan}_{G}(Y)} g(X, Y, T) \quad \forall\{X, Y\} \in \mathcal{P}^{2}(V) \backslash E, X \in\left\{X_{0}, Y_{0}\right\}\)
    \(\left\{X_{0}, Y_{0}\right\}:=\operatorname{argmax}_{\{X, Y\} \in \mathcal{P}^{2}(V) \backslash E} g(X, Y, S(\{X, Y\}))\)
od
return \(S\)
```

separators-bottumup (set of variables V, independency relation I) :
Allocate $S: \mathcal{P}^{2}(V) \rightarrow \mathcal{P}(V) \cup\{$ none $\}$
$G:=(V, E)$ with $E:=\emptyset$
separators-add-edges (S, G, I)
separators-remove-edges (S, G, I)
return S

Figure 6: Compute a separator for each pair of variables [TASB03].

Let I be the following independency structure:

$$
I(A, D), \quad I(A, E), \quad I(A, E \mid B), \quad I(A, E \mid D), \quad I(B, E)
$$

Assume C to be hidden.
d-separations between variables A, B, D, and E :

$$
I(A, D), \quad I(A, E), \quad I(A, E \mid B), \quad I(A, E \mid D), \quad I(B, E)
$$

Definition 2. Let I be an independency relation on the variables V and G be a DAG with vertices $W \supseteq V$.
I is embedded in G, if all independency statements entailed by G between variables from V hold in I :

$$
I_{G}(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) \Rightarrow I(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) \quad \forall \mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq V
$$

I is embedded faithfully in G, if the independency statements entailed by G are exactly I :

$$
I_{G}(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) \Leftrightarrow I(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) \quad \forall \mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq V
$$

Many independency relations w./o. faithful DAG representation can be embedded faithfully.

But not every independency relation can be embedded faithfully.

Let I be the independency relation [Nea03, ex. 2.13, p. 103]

$$
I(X, Y), \quad I(X, Y \mid Z)
$$

Assume, I can be embedded faithfully in a DAG G.

- As $\neg I(X, Z)$, there must be chain $X \sim Z$ w./o. head-to-head meetings.

- As $\neg I(Z, Y)$, there must be chain $Y \sim Z$ w./o. head-to-head meetings.

Now, concatenate both chains $X \sim Z \sim Y$:

- eihter $X \sim \rightarrow Z \leftarrow \sim Y$, and then the chain is not blocked by Z, i.e., not $I(X, Y \mid Z)$,
- or not $X \sim \rightarrow Z \leftarrow \sim Y$, and then the chain is not blocked by \emptyset, i.e., not $I(X, Y)$.

There are variants of the PC algorithm for finding faithful embeddings of a given independency relation:

- Causal Inference (CI) and
- Fast Causal Inference Algorithms (FCI; [SGS00])

See also [Nea03, ch. 10.2].
[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
[SGS00] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT Press, 2 edition, 2000.
[TASB03] I. Tsamardinos, C. F. Aliferis, A. Statnikov, and L. E. Brown. Scaling-up bayesian network learning to thousands of variables using local learning technique. Technical report, DSL TR-03-02, March 12, 2003, Vanderbilt University, Nashville, TN, USA, 2003.

