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Let VV be a set of variables. A complete
case is a function

c:V— U dom(V)
veV

with ¢(v) € dom(V') for all v € V.
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A incomplete case (or a case with 10
missing data ) is a complete case ¢ for | Figure 1: Complete data for
a subset 1 C V of variables. We V={F,L,B,D H}.

F LB D|H

denote var(c) := W and say, the values 0o oo
of the variables V' \ W are missing or 2|. 0/0 0]0
not observed . 31 11110
40 0. 1|1

5|0 00 0|0

. 6|0 00 0|0

A data set D € dom(V)* that contains —To 1o 11
complete cases only, is called 8/0 0|0 0]0
complete data ; if it contains an 9001 111
1011 1. 1|1

incomplete case, it is called
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Missing value indicators UNIVERSITAT FREIBURG
For each variable v, we can interpret its case |[F Mp|L M, |B Mp|D Mp|H My
e 1/o0 0]/0o 0|0 0|0 0|0 O
mls_smg of values as new random > 110 olo olo olo o
variable M, 31 0/1 0/1 0|1 0|0 O
_ 40 olo o|. 1]1 01 0O
M 1, ifvops = ., 5/0 0/0 0/0 0|0 0 0 O
v = : 6|0 0/0 0|0 o|0 0|0 O
0, otherwise 710 o . 110 o0]. 1|1 o0
led missi lue indi ¢ g8/o olo o/o o|0 0|0 O
called missing value indicator of  v. 510 o o o1 011 ol1 o
1041 O |1 O 1 /1 0|1 O
Figure 3: Incomplete data for
V .={F, L,B,D, H} and missing value
indicators.
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Types of missingness / MCAR UNIVERSITAT FREIBURG
CaSe || Vtrue | Vobserved
A variable v € V' is called missing ; ‘2L 5
completely at random (MCAR), if the 3 2 _
probability of a missing value is g ;1 ;1
(unconditionally) independent of the 5l 2 )
(true, unobserved) value of v, i.e, if 701 1
8| A .
I<Mv7 Utrue) 9| 3 3
(MCAR is also called missing ﬂ {f :
unconditionally at random ). 12| 3 _
. 13 4 4
Example: think of an apparatus 14| 2 2
measuring the velocity v of wind that 2] 2
has a |O_Ose contact c. When the _ Figure 4: Data with a variable v MCAR. Missing
contact is closed, the measurement is values are stroken through.
recorded, otherwise it is skipped. If the | unbiased estimator for the expectation
contact ¢ being closed does not depend | Of vyye; here
on the velocity v of wind, v is MCAR. ) 1
f1(vobs) :E<2'1+4'3+2'3+2'4)
. : !
If a varlable..ls MCAR,.for gach value 5 146-343-3434) — jilve)
the probability of missing is the same, 15
and, e.qg., the sample mean of vqus IS an
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Types of missingness / MA§ ERSITAT FREHingG

A variable v € V is called missing at case | << h| case case | << h
: SF 1{12}.1]0 10 14(8|. 2

ra_nd(_)m (MAR), if the_probablllty of a sl2l2l0l 11 15 lalalo
missing value is conditionally 3(8]. 0| 12 1642
independent of the (true, unobserved) ;‘ i i 8 13 i; 2 5 ;
value of v, i.e, if 51330 1905 |2
I(M.. . v W 711|110 201332

(“’_”“e‘ ) 8|2 .0 21| |2

for some set of variables W C V' \ {v} 9220 22|56 . 2

(MAR _IS also called missing Figure 5: Data with a variable v MAR
conditionally at random ). (conditionally on h).

Example: think of an apparatus
measuring the velocity v of wind. If we
measure wind velocities at three
different heights » = 0, 1,2 and say the
apparatus has problems with height not
recording

1/3 of cases at height 0,
1/2 of cases at height 1,
2/3 of cases at height 2,
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then v is missing at random
(conditionally on h).
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Types of missingness / MA§ u Q?VERSITAT FREIlingG
If v depends on variables in W, then, case | <S[<¥ h| case | S| h| case |« h
e.g., the sample mean is not an ; 121 ; 8 12 Z ; i 1;‘ i i ;
unbiased estimator, but the weighted 38T Tol a1 16lal 12
mean w.r.t. W has to be used; here: 4l3l3lol 13331l 17l5!5!2
2 5111110 18[8|.|2
> [(v|H = h)p(H = h) 6330 196/ . 2
h=0 7111110 201313 |2
g 4 8|2|.1]0 21 A . |2
=2 T35 o i 91220 226 . 2
1 . . .
#ﬁ Z v; Figure 5: Data with a variable v MAR
i:17¥,22 (conditionally on h).
2 3
=2 35— +4-—
T FRRT]
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Types of missingness / missing systematically UNIVERSITAT FREIBURG

o

A variable v € V is called missing case || <]
systematically (or not at random), if ; llL ;
the probability of a missing value does 302
depend on its (unobserved, true) value. ;1 2 :
62|2
7111
Example: if the apparatus has 3 g :
problems measuring high velocities and 1022

say, e.g., misses Figure 6: Data with a variable v missing

systematically.
1/3 of all measurements of v = 1,

1/2 of all measurements of v = 2, Again, the sample mean is not
2/3 of all measurements of v = 3, unbiased; expectation can only be
estimated if we have background
I.e., the probability of a missing value knowledge about the probabilities of a
does depend on the velocity, v is missing value dependend on its true
missing systematically. value.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany,
Course on Advanced Al Techniques, winter term 2004 6/23



Advanced Al Techniques / 4. Incomplete Data

Types of missingness / hidden variables

A variable v € V is called hidden , if the
probability of a missing value is 1, i.e., it
IS missing in all cases.

Example: say we want to measure
intelligence I of probands but cannot
do this directly. We measure their level
of education F and their income C
instead. Then I is hidden.
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UNIVERSITAT FRETBURG

o
Q
2]
D
=~
c
D

I obs

O © o ~NOO U~ WNPR
N NNERNONNEFR OO
R NP NONDNRDNDOQ

NPOPRPNMPNRONRONP

=

Figure 7: Data with a hidden variable I.

intelligence

Figure 8: Suggested dependency of variables
I, E,and C.
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types of missingness
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variable X

missing at random (MAR)

|

missing completely
at random (MCAR)
I(Mx, X)

\

hidden
p(MX = 1) =1

Figure 9: Types of missingness.

missing systematically

MAR/MCAR terminology stems from [LR87].
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complete case analysis

The simplest scheme to learn from
incomplete data D, e.g., the vertex
potentials (p,),cy Of a Bayesian
network, is complete case analysis
(also called casewise deletion ): use
only complete cases

Deompl := {d € D |d is complete}

If D is MCAR, estimations based on the
subsample D¢omp are unbiased for
Drrye.

But for higher-dimensional data (i.e.,
with a larger number of variables),
complete cases might become rare. Let
each variable have a probability for
missing values of 0.05, then for
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Figure 10: Incomplete data and data used in
complete case analysis (highlighted).

20 variables the probability of a case to
be complete is

(1 —0.05)* =~ 0.36

for 50 variables it is ~ 0.08, i.e., most
cases are deleted.
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available case analysis

A higher case rate can be achieved by
available case analysis . If a quantity
has to be estimated based on a subset
W C V of variables, e.g., the vertext
potential p, of a specific vertex v € V' of
a Bayesian network (W = fam(v)), use
only complete cases of D|y

(Dli)eompt = {d € Dl-| d is complete}

If D is MCAR, estimations based on the
subsample (Dyy)compl @re unbiased for

(DW)true-
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Figure 11: Incomplete data and data used in
available case analysis for estimating the
potential p; (L | F') (highlighted).
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Let V be a set of variables and d be an | Example If V .= {F,L, B, D, H} and
iIncomplete case. A (complete) case d d:=(2,.0,1,.)

with o
an incomplete case, then

d(v) = d(v), Vv € var(d) dy =(2,1,0,1,1)

is called a completion of d. dy :==(2,2,0,1,0)
etc. are possible completions, but

A probability distribution
e :=(1,1,0,1,1)

d:d 1 .
om(V) — [0, 1] IS Not.
with
Cilvar(d) _ epdd Assume dO?TL(U) = {O, 1, 2} forallv e V.

is called a distribution of completions The potential

of d (or a fuzzy completion of d). d: dom(V) — [0,1]

%, ifZL‘FIQ,JJB:O,
(3711)1)61/ L and rp = 1

0, otherwise

Is the uniform distribution of
completions of d.
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learning from "fuzzy cases"

Given a bayesian network structure

G := (V, E) on a set of variables V" and
a "fuzzy data set" D € pdf(V)* of "fuzzy
cases" (pdfs ¢ on V). Learning the
parameters of the bayesian network
from "fuzzy cases"” D means to find
vertex potentials (p,).ey S.t. the
maximum likelihood criterion , i.e.,
the probability of the data given the
bayesian network is maximal:

find (py)vevs.t. p(D) is maximal,
where p denotes the JPD build from
(py)vev. Here,

=111 1I

qeD veV zedom(fam(v))

fam(v) (.
(po())” )

ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

Lemma 1. p(D) is maximal iff

quD qifam(v)(x’ y)
quD glpalv) (y)
(if there is a ¢ € D with ¢'**®) > 0,

otherwise p,(x|y) can be choosen
arbitrarily — p(D) does not depend on

it).

po(zly) =
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Maximum likelihood estimates

= ALBERT-LUDWIGS-
UNIVER@ITAT FREIBURG

If D is incomplete data, in general we are looking for

(i) distributions of completions D and

(i) vertex potentials (p,),ev,
that are
(i) compatible, i.e.,

d= |nfer

for all d € D and s.t.

Dvev ()

(ii) the probability, that the completed data D has been
generated from the bayesian network specified by

(po)vev, IS maximal:

p((])v)ve\/; Dtrue) =

I 11

JHam(v) (.
(po()"

de D veV zedom(fam(v))

(with the usual constraints that Imp, C

0,1] and

> yedompaw)) Po(@ly) = 1 forallv € Vand z € dom(v)).
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Maximum likelihood estimates UNIVERSITAT FREIBURG

Unfortunately this is

e a non-linear,
¢ high-dimensional,

e for bayesian networks in general even non-convex

optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent,
Newton-Raphson, BFGS, etc.) could be used to search
local maxima of this probability function.
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Let the following bayesian network structure and training
data given.

O
Q
0
@D

cNoNolly

RPOOOORRFRLREFLOWDm

A——>B

COWoO~NOOOUILP WNE

[EEN
Y
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Optimization Problem (1/3)

case | A B | weight
1/0 O 1
201 1
3101 1
7110 1
8/1 0 1
9/1 /1 1
4111 o7
4101 1—ay
5,6 1 0 2(]{5
5600 2(1—as)
10/ 1|1 B0
1010 | 1— B

p(D) :94+a4+2 as <1 o 9>3+(1—044)+2(1—a5) 77%+0z4+ﬁ10 (1 .

77§+(1—a4) (1 . 772)1Jr2(1—0z5)

m

N2 =

L ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

A——=B

p(A=1)
p(B=1]A=1)
=p(B=1|A=0

7]1)2+2 as+(1—P310)
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Optimization Problem (2/3)

From parameters

we can compute distributions of completions:

ar=p(A=1|B=1)=

= ALBERT-LUDWIGS-
UNIVERSITAT FREIBURG

p(B=1]A=1pA=1)
ZaeAp(B =1|A=a)p(A=

p(B=0[A=1)p(A=1)

o =pA=1B =00 =5~ A~ o) p(A =

510:]9(3:1‘14:1)

a):
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Advanced Al Techniques / 5. Incomplete Data for Parameter Learning (EM a/

Substituting a4, as and By in p(D), finally yields:

0y 0(1-m1)
p(D) =6 0o 2 =)

6— 0m —9 0 (1-n1)
. (1 — 9) Om+(1=0)ny = 0(1—n1)+(1-0)(1-n3)

0m ,
-m H97z1+(1*(9)772 tm

0 (1-n1) _
) H(I-0) (1)

342
(L —=mp) O
3 0m
-1y On1+(1-0)n9

3—2 9(1_771)
(1= ) T 0T
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_ %3 ALBERT-LUDWIGS-
EM algonthm UNIVERSITAT FREIBURG

For bayesian networks a widely used technique to search
local maxima of the probability function p is
Expectation-Maximization (EM, in essence a gradient
descent).

At the beginning, (p,).cy are initialized, e.g., by complete,
by available case analysis, or at random.

Then one computes alternating
expectation or E-step:

d :=infer, . (d), Vde D

(forcing the compatibility constraint) and
maximization or M-step:

(pv)wev With maximal p((p,)vev, D)
keeping D fixed.
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Advanced Al Techniques / 5. Incomplete Data for Parameter Learning (EM a/

EM algorithm

The E-step is implemented using an inference algorithm,
e.g., clustering [Lau95]. The variables with observed
values are used as evidence, the variables with missing
values form the target domain.

The M-step is implemented using lemma 2:

or(aly) i men )
v ) ZqED qlpa(U) (y)

See [BKS97] and [FKO3] for further optimizations aiming
at faster convergence.
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ALBERT-LUDWIGS-
Exam p|e UNIVERSITAT FREIBURG
Let the following bayesian network Using complete case analysis we
structure and training data given. estimate (1st M-step)
A>—><B p(A) = (05, 05)
case|A|B and
1/0/0 A0 1
2101 p(B|A) = B=10/0.33 0.67
3|01 110.67 0.33
g‘ Cl) Then we estimate the distributions of
5 0 completions (1st E-step)
7 1 0 case | B|p(A=0) | p(A=1)
g1 0 411 0.67 | 0.33
9111 56,0 0.33 | 0.67
101 case | A | p(B=0) p(B=1)
10/1| 0.67 | 0.33
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example / second & third step

From that we estimate (2nd M-step)
p(A) = (0.44,0.56)

and

A
0
1

0 1
0.38 0.62
0.71 0.29

p(B|A)= B

Then we estimate the distributions of
completions (2nd E-step)

B | p(A=0)
0.62
0.29

p(B=0)
0.71

case
4
5,6
case
10

p(A=1)
0.38
0.71

p(B=1)
0.29

1
0
A
1

" ALBERT-LUDWIGS-
UNIVERSITAT FRETBURG

From that we estimate (3rd M-step)
p(A) = (0.43,0.57)

and
A0 1
p(B|A) = B=10]0.38 0.62
110.71 0.29
etc.

0.6 0.7

probability
0.5

0.4

0.3

T T T T T T
2 4 6 8 10 12

Figure 12: Convergence of the EM algorithm
(black p(A=0), red p(B=0|A=0), green
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p(B=0|A=1)).
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