

Advanced AI Techniques

I. Bayesian Networks / 2. Parameter Learning (2/2)

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Institute for Computer Science
University of Freiburg
http://www.informatik.uni-freiburg.de/

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

1/23

Advanced AI Techniques

- 1. Maximum Likelihood Parameter Estimates
- 2. Bayesian Parameter Estimates / One Variable
- 3. Bayesian Parameter Estimates / Several Variables
- 4. Incomplete Data
- 5. Incomplete Data for Parameter Learning (EM algorithm)

Complete and incomplete cases

Let *V* be a set of variables. A **complete** case is a function

$$c: V \to \bigcup_{v \in V} \operatorname{dom}(V)$$

with $c(v) \in \text{dom}(V)$ for all $v \in V$.

A incomplete case (or a case with **missing data**) is a complete case c for a subset $W \subseteq V$ of variables. We denote var(c) := W and say, the values of the variables $V \setminus W$ are **missing** or not observed.

A data set $D \in dom(V)^*$ that contains complete cases only, is called complete data; if it contains an incomplete case, it is called incomplete data.

Course on Advanced Al Techniques, winter term 2004

Figure 1: Complete data for $V := \{F, L, B, D, H\}.$

case	F	L	В	D	Н
1	0	0	0	0	0
2	١.	0	0	0	0
3	1	1	1	1	0
4	0	0		1	1
5	0	0	0	0	0
6	0	0	0	0	0
7 8	0		0		1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1		1	1

Figure 2: Incomplete data for

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, are marked by a dot.

1/23

Advanced Al Techniques / 4. Incomplete Data

Missing value indicators

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

For each variable v, we can interpret its missing of values as new random variable M_v ,

$$M_v := egin{cases} 1, & \text{if } v_{\mathsf{obs}} = ., \\ 0, & \text{otherwise} \end{cases}$$

called missing value indicator of v.

case	F	M_F	L	M_L	В	M_B	D	M_D	Н	M_H
1	0	0	0	0	0	0	0	0	0	0
2	.	1	0	0	0	0	0	0	0	0
3	1	0	1	0	1	0	1	0	0	0
4	0	0	0	0		1	1	0	1	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0		1	0	0		1	1	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	1	0	1	0	1	0
10	1	0	1	0		1	1	0	1	0

Figure 3: Incomplete data for $V := \{F, L, B, D, H\}$ and missing value indicators.

Types of missingness / MCAR

A variable $v \in V$ is called **missing completely at random** (MCAR), if the probability of a missing value is (unconditionally) independent of the (true, unobserved) value of v, i.e, if

$$I(M_v, v_{\mathsf{true}})$$

(MCAR is also called missing unconditionally at random).

Example: think of an apparatus measuring the velocity v of wind that has a loose contact c. When the contact is closed, the measurement is recorded, otherwise it is skipped. If the contact c being closed does not depend on the velocity v of wind, v is MCAR.

If a variable is MCAR, for each value the probability of missing is the same, and, e.g., the sample mean of $v_{\rm obs}$ is an Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany,

Course on Advanced AI Techniques, winter term 2004

Advanced AI Techniques / 4. Incomplete Data

۱R		UNIVER	SITÄT FREIBURG
case	v_{true}	$v_{ m observed}$	
1	/1		
2	2	2	
3	2		
4	4	4	
5	3	3	
6	2	2	
7	1	1	
8	A	-	
9	3	3	
10	2		
11	1	1	
12	B		
13	4	4	
14	2	2	
15	2	2	

ALBERT-LUDWIGS-

3/23

4/23

ALBERT-LUDWIGS-

UNIVERSITÄT FREIBURG

Figure 4: Data with a variable v MCAR. Missing values are stroken through. unbiased estimator for the expectation of $v_{\rm true}$; here

$$\begin{split} \hat{\mu}(v_{\text{obs}}) &= \frac{1}{10}(2 \cdot 1 + 4 \cdot 3 + 2 \cdot 3 + 2 \cdot 4) \\ &= \frac{1}{15}(3 \cdot 1 + 6 \cdot 3 + 3 \cdot 3 + 3 \cdot 4) = \hat{\mu}(v_{\text{true}}) \end{split}$$

2004

Types of missingness / MAR

A variable $v \in V$ is called **missing at** random (MAR), if the probability of a missing value is conditionally independent of the (true, unobserved) value of v, i.e, if

$$I(M_v, v_{\mathsf{true}} \,|\, W)$$

for some set of variables $W \subseteq V \setminus \{v\}$ (MAR is also called **missing** conditionally at random).

Example: think of an apparatus measuring the velocity v of wind. If we measure wind velocities at three different heights h=0,1,2 and say the apparatus has problems with height not recording

1/3 of cases at height 0,

1/2 of cases at height 1,

2/3 of cases at height 2,

	S	2 3	S.		.5	2 .0	o,		S	2 3	S.
case	243	, 38°	h	case	250	\ \%	h	case	243	100	h
1	1		0	10	B		1	14	B		2
2	2	2	0	11	4	4	1	15	4	4	2
3	B		0	12	4		1	16	/ 4		2
4	3	3	0	13	3	3	1	17	5	5	2
5	1	1	0					18	B		2
6	3	3	0					19	5		2
7	1	1	0					20	3	3	2
8	2		0					21	/ 4		2
9	2	2	0					22	5		2

Figure 5: Data with a variable v MAR (conditionally on h).

then v is missing at random (conditionally on h).

Types of missingness / MAR

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

If v depends on variables in W, then, e.g., the sample mean is not an unbiased estimator, but the weighted mean w.r.t. W has to be used; here:

$\sum^{2} \hat{\mu}(v H=h)p(H=h)$
h=0 9 4 9
$=2\cdot\frac{9}{22}+3.5\cdot\frac{4}{22}+4\cdot\frac{9}{22}$
$\neq \frac{1}{11} \sum_{\substack{i=1,\dots,22\\v_i\neq i}} v_i$
$=2 \cdot \frac{6}{11} + 3.5 \cdot \frac{2}{11} + 4 \cdot \frac{3}{11}$

		ر د	õ			0 .0	ັ			ر د	5
case	750		h	case	200	૾ૢ૽ૺૢૹ૿	h	case	200	૾ૢૺૺ૾ૢૹ૿	h
1	1		0	10	B		1	14	B		2
2	2	2	0	11	4	4	1	15	4	4	2
3	B		0	12	/ 4		1	16	/ 4		2
4	3	3	0	13	3	3	1	17	5	5	2
5	1	1	0					18	B		2
6	3	3	0					19	5	١.	2
7	1	1	0					20	3	3	2
8	2		0					21	/ 4	١.	2
9	2	2	0					22	5		2
		•	•								

Figure 5: Data with a variable v MAR (conditionally on h).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

5/23

Advanced Al Techniques / 4. Incomplete Data

Types of missingness / missing systematically UNIVERSITÄT FREIBURG

A variable $v \in V$ is called **missing** systematically (or not at random), if the probability of a missing value does depend on its (unobserved, true) value.

Example: if the apparatus has problems measuring high velocities and say, e.g., misses

1/3 of all measurements of v=1, 1/2 of all measurements of v=2, 2/3 of all measurements of v=3,

i.e., the probability of a missing value does depend on the velocity, \boldsymbol{v} is missing systematically.

case	250	200
1	/	
2	1	1
3	2	
4	B	
5	3	3
6	2	2
7	1	1
8	2	
9	B 2	
10	2	2

Figure 6: Data with a variable v missing systematically.

Again, the sample mean is not unbiased; expectation can only be estimated if we have background knowledge about the probabilities of a missing value dependend on its true value.

Types of missingness / hidden variables

A variable $v \in V$ is called **hidden**, if the probability of a missing value is 1, i.e., it is missing in all cases.

Example: say we want to measure intelligence I of probands but cannot do this directly. We measure their level of education E and their income C instead. Then I is hidden.

case	I_{true}	I_{obs}	E	C
1	/1		0	0
2	2		1	2
3	2		2	1
4	2		2	2
5	/1		0	2
6	2		2	0
7	/		1	2
8	D		2	1
9	/		2	2
10	2		2	1

Figure 7: Data with a hidden variable I.

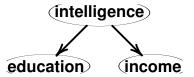


Figure 8: Suggested dependency of variables I, E, and C.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

7/23

Advanced AI Techniques / 4. Incomplete Data

types of missingness

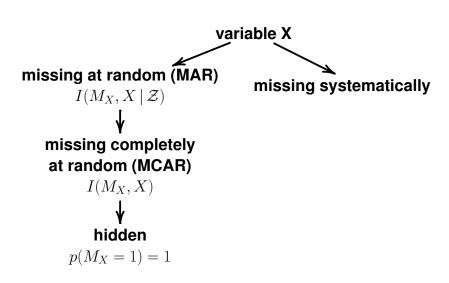


Figure 9: Types of missingness.

MAR/MCAR terminology stems from [LR87].

complete case analysis

The simplest scheme to learn from incomplete data D, e.g., the vertex potentials $(p_v)_{v\in V}$ of a Bayesian network, is **complete case analysis** (also called **casewise deletion**): use only complete cases

$$D_{\mathsf{compl}} := \{ d \in D \mid d \text{ is complete} \}$$

If D is MCAR, estimations based on the subsample D_{compl} are unbiased for D_{true} .

But for higher-dimensional data (i.e., with a larger number of variables), complete cases might become rare. Let each variable have a probability for missing values of 0.05, then for

case	F	L	В	D	Н
1	0	0	0	0	0
2		0	0	0	0
3	1	1	1	1	0
4	0	0		1	1
5 6	0	0	0	0	0
6	0	0	0	0	0
7	0		0		1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1		1	1

Figure 10: Incomplete data and data used in complete case analysis (highlighted).

20 variables the probability of a case to be complete is

$$(1 - 0.05)^{20} \approx 0.36$$

for 50 variables it is ≈ 0.08 , i.e., most cases are deleted.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

9/23

Advanced Al Techniques / 4. Incomplete Data

available case analysis

A higher case rate can be achieved by available case analysis. If a quantity has to be estimated based on a subset $W \subseteq V$ of variables, e.g., the vertext potential p_v of a specific vertex $v \in V$ of a Bayesian network (W = fam(v)), use only complete cases of $D|_W$

$$(D|_W)_{\mathsf{compl}} = \{d \in D|_W \,|\, d \text{ is complete}\}$$

If D is MCAR, estimations based on the subsample $(D_W)_{\text{compl}}$ are unbiased for $(D_W)_{\text{true}}$.

case	F	L	В	D	Н
1	0	0	0	0	0
2		0	0	0	0
3	1	1	1	1	0
4	0	0		1	1
5	0	0	0	0	0
6	0	0	0	0	0
7	0		0		1
8	0	0	0	0	0
9	0	0	1	1	1
10	1	1		1	1

Figure 11: Incomplete data and data used in available case analysis for estimating the potential $p_L(L \mid F)$ (highlighted).

- 1. Maximum Likelihood Parameter Estimates
- 2. Bayesian Parameter Estimates / One Variable
- 3. Bayesian Parameter Estimates / Several Variables
- 4. Incomplete Data
- 5. Incomplete Data for Parameter Learning (EM algorithm)

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

11/23

Advanced AI Techniques / 5. Incomplete Data for Parameter Learning (EM a

completions

1M) ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Let V be a set of variables and d be an incomplete case. A (complete) case \bar{d} with

$$\bar{d}(v) = d(v), \quad \forall v \in \text{var}(d)$$

is called a **completion of** d.

A probability distribution

$$\bar{d}: \operatorname{dom}(V) \to [0,1]$$

with

$$\bar{d}^{\downarrow \mathrm{var}(d)} = \mathsf{epd}_d$$

is called a distribution of completions of d (or a fuzzy completion of d).

Example If
$$V:=\{F,L,B,D,H\}$$
 and
$$d:=(2,.,0,1,.)$$

an incomplete case, then

$$\bar{d}_1 := (2, 1, 0, 1, 1)$$

 $\bar{d}_2 := (2, 2, 0, 1, 0)$

etc. are possible completions, but

$$e := (1, 1, 0, 1, 1)$$

is not.

Assume $dom(v) := \{0, 1, 2\}$ for all $v \in V$. The potential

$$\begin{array}{ccc} \bar{d}: \ \mathrm{dom}(V) \ \rightarrow \ [0,1] \\ & (x_v)_{v \in V} \ \mapsto \begin{cases} \frac{1}{9}, & \ \text{if} \ x_F = 2, x_B = 0, \\ & \ \text{and} \ x_D = 1 \\ 0, & \ \text{otherwise} \end{cases}$$

is the uniform distribution of completions of d.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

learning from "fuzzy cases"

a <u>im)</u> ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Given a bayesian network structure G:=(V,E) on a set of variables V and a "fuzzy data set" $D\in pdf(V)^*$ of "fuzzy cases" (pdfs q on V). Learning the parameters of the bayesian network from "fuzzy cases" D means to find vertex potentials $(p_v)_{v\in V}$ s.t. the maximum likelihood criterion, i.e., the probability of the data given the bayesian network is maximal:

find $(p_v)_{v\in V}s.t.$ p(D) is maximal, where p denotes the JPD build from $(p_v)_{v\in V}$. Here,

$$p(D) := \prod_{q \in D} \prod_{v \in V} \prod_{x \in \text{dom}(\text{fam}(v))} (p_v(x))^{q^{\downarrow \text{fam}(v)}(x)}$$

Lemma 1. p(D) is maximal iff

$$p_v(x|y) := \frac{\sum_{q \in D} q^{\downarrow \operatorname{fam}(v)}(x, y)}{\sum_{q \in D} q^{\downarrow \operatorname{pa}(v)}(y)}$$

(if there is a $q \in D$ with $q^{\downarrow \mathrm{pa}(v)} > 0$, otherwise $p_v(x|y)$ can be choosen arbitrarily -p(D) does not depend on it).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

12/23

Advanced Al Techniques / 5. Incomplete Data for Parameter Learning (EM a nm)

Maximum likelihood estimates UNIVERSITÄT FREIBURG

If D is incomplete data, in general we are looking for

- (i) distributions of completions \bar{D} and
- (ii) vertex potentials $(p_v)_{v \in V}$, that are
- (i) compatible, i.e.,

$$\bar{d} = \mathsf{infer}_{(p_n)_{n \in V}}(d)$$

for all $\bar{d} \in \bar{D}$ and s.t.

(ii) the probability, that the completed data \bar{D} has been generated from the bayesian network specified by $(p_v)_{v \in V}$, is maximal:

$$p((p_v)_{v \in V}, \bar{D}_{\mathsf{true}}) := \prod_{\bar{d} \in \bar{D}} \prod_{v \in V} \prod_{x \in \mathsf{dom}(\mathsf{fam}(v))} (p_v(x))^{\bar{d}^{\downarrow \mathsf{fam}(v)}(x)}$$

(with the usual constraints that $\mathrm{Im} p_v \subseteq [0,1]$ and $\sum_{y \in \mathrm{dom}(\mathrm{pa}(v))} p_v(x|y) = 1$ for all $v \in V$ and $x \in \mathrm{dom}(v)$).

Maximum likelihood estimates

Unfortunately this is

- a non-linear,
- high-dimensional,
- for bayesian networks in general even non-convex optimization problem without closed form solution.

Any non-linear optimization algorithm (gradient descent, Newton-Raphson, BFGS, etc.) could be used to search local maxima of this probability function.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

14/23

ALBERT-LUDWIGS-

UNIVERSITÄT FREIBURG

Advanced AI Techniques / 5. Incomplete Data for Parameter Learning (EM a

Example

Let the following bayesian network structure and training data given.

case	Α	В
1	0	0
2	0	1
3	0	1
4		1
2 3 4 5 6		0
6		0
7	1	0
8	1	0
9	1	1
10	1	



Optimization Problem (1/3)

1	a <u> nm</u>	
		ERT-LUDWIGS-
	UNIVERS	ITÄT FREIBURG

case	Α	В	weight
1	0	0	1
2	0	1	1
2 3 7 8 9	0	1	1
7	1	0	1
8	1	0	1
9	1	1	1
4	1	1	α_4
4	0	1	$1-\alpha_4$
5,6	1	0	$2\alpha_5$
5,6	0	0	$2\left(1-\alpha_{5}\right)$
10	1	1	β_{10}
10	1	0	$1-\beta_{10}$

$$\theta = p(A = 1)$$

 $\eta_1 = p(B = 1 \mid A = 1)$
 $\eta_2 = p(B = 1 \mid A = 0)$

$$p(D) = \theta^{4+\alpha_4+2\alpha_5} (1-\theta)^{3+(1-\alpha_4)+2(1-\alpha_5)} \eta_1^{1+\alpha_4+\beta_{10}} (1-\eta_1)^{2+2\alpha_5+(1-\beta_{10})} \cdot \eta_2^{2+(1-\alpha_4)} (1-\eta_2)^{1+2(1-\alpha_5)}$$

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

16/23

Advanced AI Techniques / 5. Incomplete Data for Parameter Learning (EM a

Optimization Problem (2/3)

From parameters

$$\theta = p(A = 1)$$

 $\eta_1 = p(B = 1 \mid A = 1)$
 $\eta_2 = p(B = 1 \mid A = 0)$

we can compute distributions of completions:

$$\alpha_4 = p(A = 1 \mid B = 1) = \frac{p(B = 1 \mid A = 1) p(A = 1)}{\sum_{a \in A} p(B = 1 \mid A = a) p(A = a)} = \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2}$$

$$\alpha_5 = p(A = 1 \mid B = 0) = \frac{p(B = 0 \mid A = 1) p(A = 1)}{\sum_{a \in A} p(B = 0 \mid A = a) p(A = a)} = \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta) (1 - \eta_2)}$$

$$\beta_{10} = p(B = 1 \mid A = 1) = \eta_1$$

Optimization Problem (3/3)

Substituting α_4, α_5 and β_{10} in p(D), finally yields:

$$\begin{split} p(D) = & \theta^{4 + \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2} + 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)}} \\ & \cdot \left(1 - \theta\right)^{6 - \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2} - 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)}} \\ & \cdot \eta_1^{1 + \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2} + \eta_1} \\ & \cdot \left(1 - \eta_1\right)^{3 + 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)} - \eta_1} \\ & \cdot \eta_2^{3 - \frac{\theta \eta_1}{\theta \eta_1 + (1 - \theta) \eta_2}} \\ & \cdot \left(1 - \eta_2\right)^{3 - 2 \frac{\theta (1 - \eta_1)}{\theta (1 - \eta_1) + (1 - \theta)(1 - \eta_2)}} \end{split}$$

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2004

18/23

Advanced AI Techniques / 5. Incomplete Data for Parameter Learning (EM a

EM algorithm

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

For bayesian networks a widely used technique to search local maxima of the probability function p is **Expectation-Maximization** (EM, in essence a gradient descent).

At the beginning, $(p_v)_{v \in V}$ are initialized, e.g., by complete, by available case analysis, or at random.

Then one computes alternating expectation or E-step:

$$\bar{d} := \mathsf{infer}_{(p_v)_{v \in V}}(d), \quad \forall d \in D$$

(forcing the compatibility constraint) and maximization or M-step:

$$(p_v)_{v \in V}$$
 with maximal $p((p_v)_{v \in V}, \bar{D})$

keeping \bar{D} fixed.

EM algorithm

The E-step is implemented using an inference algorithm, e.g., clustering [Lau95]. The variables with observed values are used as evidence, the variables with missing values form the target domain.

The M-step is implemented using lemma 2:

$$p_v(x|y) := \frac{\sum_{q \in D} q^{\downarrow \operatorname{fam}(v)}(x, y)}{\sum_{q \in D} q^{\downarrow \operatorname{pa}(v)}(y)}$$

See [BKS97] and [FK03] for further optimizations aiming at faster convergence.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

20/23

Advanced AI Techniques / 5. Incomplete Data for Parameter Learning (EM a

ALBERT-LUDWIGS-Universität freiburg

Example

Let the following bayesian network structure and training data given.

A)—	→	(B
case	Α	В
1	0	0
2	0	1
3	0	1
2 3 4 5 6		1
5		0
6		0
7	1	0
7 8 9	1	0
9	1	1
10	1	

Using complete case analysis we estimate (1st M-step)

$$p(A) = (0.5, 0.5)$$

and

$$p(B|A) = \frac{A \mid 0 \quad 1}{B = 0 \mid 0.33 \mid 0.67}$$

$$1 \mid 0.67 \mid 0.33$$

Then we estimate the distributions of completions (1st E-step)

case	В	p(A=0)	p(A=1)
4	1	0.67	0.33
5,6	0	0.33	0.67
case	Α	p(B=0)	p(B=1)
10	1	0.67	0.33

example / second & third step

1m) Albert-Ludwigs-Universität freiburg

From that we estimate (2nd M-step)

p(A) = (0.44, 0.56)

and

$$p(B|A) = \frac{A \mid 0 \quad 1}{B = 0 \mid 0.38 \mid 0.62}$$

$$1 \mid 0.71 \mid 0.29$$

Then we estimate the distributions of completions (2nd E-step)

case	В	p(A=0)	p(A=1)
4	1	0.62	0.38
5,6	0	0.29	0.71
case	Α	p(B=0)	p(B=1)
10	1	0.71	0.29

From that we estimate (3rd M-step)

$$p(A) = (0.43, 0.57)$$

and

$$p(B|A) = \begin{array}{c|c} A & 0 & 1 \\ \hline B = 0 & 0.38 & 0.62 \\ 1 & 0.71 & 0.29 \end{array}$$

etc.

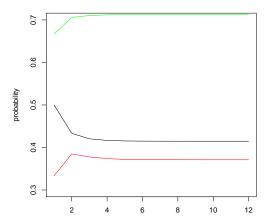


Figure 12: Convergence of the EM algorithm (black p(A=0), red p(B=0|A=0), green p(B=0|A=1)).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2004

22/23

Advanced AI Techniques / 5. Incomplete Data for Parameter Learning (EM a

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

References

- [BKS97] E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in Bayesian networks. In *Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI)*, 1997.
- [FK03] J. Fischer and K. Kersting. Scaled cgem: A fast accelerated em. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski, editors, *Proceedings of the Fourteenth European Conference on Machine Learning (ECML-2003)*, pages 133–144, Cavtat, Croatia, 2003.
- [Lau95] S. L. Lauritzen. The em algorithm for graphical association models with missing data. Computational Statistics & Data Analysis, 19:191–201, 1995.
- [LR87] R. J. A. Little and D. B. Rubin. *Statistical analysis with missing data*. Wiley, New York, 1987.