An Introduction to Game Theory Part III: Strictly Competitive Games Bernhard Nebel

Strictly Competitive Games

- A strictly competitive or zero-sum game is a 2player strategic game such that for each $a \in A$, we have $u_1(a) + u_2(a) = 0$.
 - What is good for me, is bad for my opponent and vice versa
- Note: Any game where the sum is a constant c can be transformed into a zero-sum game with the same set of equilibria:

 $-u'_1(a)=u_1(a)$

 $-u'_{2}(a) = u_{2}(a) - c$

How to Play Zero-Sum Games?					
 Assume that only <i>pure</i> strategies are allowed Dominating strategy? Nash equilibrium? 		L	М	R	
 Be paranoid: Try to minimize your loss by assuming the worst! Player 1 takes minimum over row values: T: -6, M: -1, B: -6 then maximizes: M: -1 	Т	8,-8	3,-3	-6,6	
	М	2,-2	-1,1	3,-3	
	В	-6,6	4,-4	8,-8	

Maximinimizer

 An action x* is called maximinimizer for player 1, if

 $\min_{v \in A_2} u_1(x^*, y) \ge \min_{v \in A_2} u_1(x, y) \text{ for all } x \in A_1$

- Similar for player 2
- Maximinimizer try to minimize the loss, but do not necessarily lead to a Nash equilibirium.
- However, if a NE exists, then the action profile is a pair of maximinimizers!

Maximinimizer Theorem

In strictly competitive games:

- If (x*,y*) is a Nash equilibrium of G then x* is a maximinimizer for player 1 and y* is a maximinimizer for player 2.
- 2. If (x^*, y^*) is a Nash equilibrium of G then $\max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y) = u_1(x^*, y^*)$.
- If max_x min_y u₁(x,y) = min_y max_x u₁(x,y) and x* is a maximinimizer for player 1 and y* is a maximinizer for player 2, then (x*, y*) is a Nash equilibrium.

Some Consequences

- Because of (2): if (x*,y*) is a NE then max_x min_y u₁(x,y) = u₁(x*,y*), all NE yield the same payoff
 - it is irrelvant which we choose.
- Because of (2), if (x*,y*) and (x', y') are a NEs then x*, x' are maximinimizers for player 1 and y*, y' are maximinimizers for player 2. Because of (3), then (x*,y') and (x',y*) are NEs as well!
 - it is not necessary to coordinate in order to play in a NE!

How to Find NEs in Mixed Strategies?

- While it is non-trivial to find NEs for general sum games, zero-sum games are "easy
- Let's test all mixed strategies of player 1 α_1 against all mixed strategies of player 2 α_2 . Then use only those that are maximinimizers.
- Since all mixed strategies are linear combinations of pure strategies, it is enough to check against the pure strategies of player 2 (support theorem).
- We just have to optimize, i.e., find the best mixed strategy

Use linear programming

Linear Programming: The Idea

- The article-mix problem:
 - article 1 needs: 25 min of cutting, 60 min of assembly, 68 min of postprocessing · results in 30 Euro profit per article
 - article 2 needs: 75 min of cutting, 60 min of assembly, and 34 min of postprocessing · results in 40 Euro profit per article
 - per day: 450 min of cutting, 480 min of assembly and 476 min of postprocessing
- Try to maximize profit

Resulting Constraints & Optimization Goals

- x: #article1, y: #article2
- $x \ge 0, y \ge 0$
- $25x+75x \le 450$ (cutting) > y \leq 6-(1/3 \cdot x)
- $60x + 60y \le 480$ (assembly) $\gg y \le 8 - x$
- $68x+34y \le 476$ (postprocessing) \gg y \leq 14 - 2x
- Maximize z = 30x+40y

Linear Programming: The General Case

- n real-valued variables x_i
- *m* coefficients *b_i* and constants *c_i*
- *m*·*n* coefficients *a_{ii}*
- $m = quations \sum_i a_{ii} x_i = c_i$
- objective function: $\sum_i b_i x_i$ is to be minimized
- Can be solved by the simplex method - *lpsolve* (under Linux)

Solving Zero-Sum Games

- Let $A_1 = \{a_{11}, ..., a_{1n}\}, A_2 = \{a_{21}, ..., a_{2m}\},\$
- Player 1 looks for a mixed strategy α₁
 Σ_i α₁(a_{1i}) = 1
 - $-\alpha_1(a_{1i}) \ge 0$
 - $-\sum_{j} \alpha_{1}(a_{1j}) \cdot u_{1}(a_{1j}, a_{2i}) \ge u \text{ for all } i \in \{1, ..., m\}$
 - Maximize *u*!
- Similarly for player 2.

Conclusion

- Zero-sum games are particularly simple
- Playing a pure maximinizing strategy minimizes loss (for pure strategies)
- If NE exists, it is a pair of maximinimizers
- NEs can be freely "mixed"
- In mixed strategies, NEs always exists
- Can be determined by linear programming