An Introduction to Game Theory
Part II: Mixed and Correlated Strategies
Bernhard Nebel

Randomizing Actions ...
- Since there does not seem to exist a rationale decision, it might be best to randomize strategies.
- Play Head with probability p and Tail with probability $1-p$
- Switch to expected utilities

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>

Some Notation
- Let $G = (N, (A_i), (u_i))$ be a strategic game
- Then $\Delta(A_i)$ shall be the set of probability distributions over A_i – the set of mixed strategies $\alpha_i \in \Delta(A_i)$
- $\alpha_i(a_i)$ is the probability that a_i will be chosen in the mixed strategy α_i
- A profile $\alpha = (\alpha_i)$ of mixed strategies induces a probability distribution on A: $p(a) = \prod_i \alpha_i(a_i)$
- The expected utility is $U_i(\alpha) = \sum_{a \in A} p(a) \cdot u_i(a)$

Example of a Mixed Strategy
- Let
 - $\alpha_1(H) = 2/3$, $\alpha_1(T) = 1/3$
 - $\alpha_2(H) = 1/3$, $\alpha_2(T) = 2/3$
- Then
 - $p(H,H) = 2/9$
 - ...
 - $U_1(\alpha_1, \alpha_2) = ?$
 - $U_2(\alpha_1, \alpha_2) = ?$

Mixed Extensions
- The mixed extension of the strategic game $(N, (A_i), (u_i))$ is the strategic game $(N, \Delta(A_i), (U_i))$.
- The mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium of its mixed extension.
- Note that the Nash equilibria in pure strategies (as studied in the last part) are just a special case of mixed strategy equilibria.

Nash’s Theorem
Theorem. Every finite strategic game has a mixed strategy Nash equilibrium.
- Note that it is essential that the game is finite
- So, there exists always a solution
- What is the computational complexity?
- This is an open problem! Not known to be NP-hard, but there is no known polynomial time algorithm
The Support

- We call all pure actions a_i that are chosen with non-zero probability by a_i the support of the mixed strategy a_i

Lemma. Given a finite strategic game, a_i^* is a mixed strategy equilibrium if and only if for every player i every pure strategy in the support of a_i^* is a best response to a_i^*.

Proving the Support Lemma

Assume that a_i^* is a Nash equilibrium with a_i being in its support but not being a best response to a_i^*.

- This means, by reassigning the probability of a_i to the other actions in the support, one can get a higher payoff for player i.
- This implies a_i^* is not a Nash equilibrium \Rightarrow (Proving the contraposition): Assume that a_i^* is not a Nash equilibrium.
- This means that there exists $a_i’$ that is a better response than a_i^* to a_i^*.
- Then because of how U_i is computed, there must be an action $a_i’$ in the support of $a_i’$ that is a better response (higher utility) to a_i^* than an action $a_i’$ in the support of a_i^*.
- This implies that there are actions in the support of a_i^* that are not best responses to a_i^*.

Using the Support Lemma

- The Support Lemma can be used to characterize all Nash equilibria types in 2-person 2x2 action games.
- There are 4 potential Nash equilibria in pure strategies
 - Easy to check
 - There are another 4 potential Nash equilibria types with a 1-support (pure) against 2-support mixed strategies
 - Exists only if the payoff for the mixed strategy player is identical for both pure strategies and one of the corresponding pure strategy profiles is already a Nash equilibrium (follows from Support Lemma)
 - There exists one other potential Nash equilibrium type with a 2-support against a 2-support mixed strategy
 - Here we can use the Support Lemma to compute the NE (if there exists one)

A Mixed Nash Equilibrium for Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Tail</td>
<td>0,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

- There is clearly no NE in pure strategies
- Let's try whether there is a 2/2 NE α^* in mixed strategies
- Then the H action by player 1 should have the same utility as the T action when played against the mixed strategy α^*

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
</table>
| $U((1,0), (a_2(T), a_2(T)))$ | $U((0,1), (a_2(H), a_2(T)))$ | $U((0,0), (a_2(H), a_2(T)))$
| $U((1,0), (a_2(H), a_2(T)))$ | $U((0,0), (a_2(H), a_2(T)))$ | $U((0,1), (a_2(H), a_2(T)))$
| $U((0,0), (a_2(H), a_2(T)))$ | $U((0,1), (a_2(H), a_2(T)))$ | $U((1,0), (a_2(H), a_2(T)))$
| $a_2(H)$ = $a_2(T)$ | $a_2(H)$ | $a_2(T)$
| $a_2(H)$ | $a_2(T)$ | $a_2(H)$
| $a_2(H)$ | $a_2(T)$ | $a_2(H)$
| $a_2(T)$ | $a_2(H)$ | $a_2(T)$

- Because of $a_2(H)$ or $a_2(T)$ = 1:
 - $a_2(H)$ or $a_2(T)$ = 1/2
 - Similarly for player i!
- $U_i(\alpha^*) = 0$

Mixed NE for BoS

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>2,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Tail</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

- There are obviously 2 NEs in pure strategies
- Is there also a 2/2 strictly mixed NE?
- If so, again B and S played by player 1 should lead to the same payoff.

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
</table>
| $U_1((1,0), (a_2(B), a_2(S)))$ = $U_1((1,0), (a_2(B), a_2(S)))$ | $U_1((0,1), (a_2(B), a_2(S)))$ | $U_1((0,0), (a_2(B), a_2(S)))$
| $U_1((1,0), (a_2(B), a_2(S)))$ | $U_1((0,1), (a_2(B), a_2(S)))$ | $U_1((0,0), (a_2(B), a_2(S)))$
| $a_2(B)$ = $a_2(S)$ | $a_2(B)$ | $a_2(S)$
| Because of $a_2(B)$ or $a_2(S)$ = 1:
 - $a_2(B)$ or $a_2(S)$ = 1/2
 - Similarly for player i!
- $U_i(\alpha^*) = 2/3$

Couldn’t we Help the BoS Players?

- BoS have two pure strategy Nash equilibria
 - but which should they play?
- They can play a mixed strategy, but this is worse than any pure strategy
- The solution is to talk about, where to go
- Use an external random signal to decide where to go
- Correlated Nash equilibria
- In the BoS case, we get a payoff of 1.5
Conclusion

- Although Nash equilibria do not always exist, one can give a guarantee, when we randomize finite games:
 - For every finite strategic game, there exists a Nash equilibrium in mixed strategies.
- Actions in the support of mixed strategies in a NE are always best answers to the NE profile, and therefore have the same payoff → Support Lemma.
- The Support Lemma can be used to determine mixed strategy NEs for 2-person games with 2x2 action sets.
- In general, there is no poly-time algorithm known for computing a Nash equilibrium (and it is open whether this problem is NP-hard).
- In addition to pure and mixed NEs, there exists the notion of correlated NE, where you coordinate your action using an external randomized signal.