An Introduction to Game Theory Part II:
 Mixed and Correlated Strategies

Bernhard Nebel

Some Notation

- Let $G=\left(N,\left(A_{i}\right),\left(u_{i}\right)\right)$ be a strategic game
- Then $\Delta\left(A_{i}\right)$ shall be the set of probability distributions over A_{i} - the set of mixed strategies $\alpha_{i} \in \Delta\left(A_{i}\right)$
- $a_{i}\left(a_{i}\right)$ is the probability that a_{i} will be chosen in the mixed strategy a_{i}
- A profile $\alpha=\left(\alpha_{i}\right)$ of mixed strategies induces a probability distribution on A : $p(a)=\Pi_{i} \alpha_{i}\left(a_{i}\right)$
- The expected utility is $U_{i}(\alpha)=\sum_{a \in A} p(a) u_{i}(a)$

Mixed Extensions

- The mixed extension of the strategic game $\left(N,\left(A_{i}\right),\left(u_{i}\right)\right)$ is the strategic game (N, $\left.\Delta\left(A_{i}\right),\left(U_{i}\right)\right)$.
- The mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium of its mixed extension.
- Note that the Nash equilibria in pure strategies (as studied in the last part) are just a special case of mixed strategy equilibria.

Randomizing Actions ...

- Since there does not seem to exist a rationale decision, it might be best to randomize strategies.
- Play Head with probability p and Tail with probability $1-p$
- Switch to expected utilities

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

Example of a Mixed Strategy

- Let
$-\alpha_{1}(\mathrm{H})=2 / 3, \alpha_{1}(\mathrm{~T})=1 / 3$
$-\alpha_{2}(\mathrm{H})=1 / 3, \alpha_{2}(\mathrm{~T})=2 / 3$
- Then
$-p(\mathrm{H}, \mathrm{H})=2 / 9$
- ...
$-U_{1}\left(\alpha_{1}, \alpha_{2}\right)=$?
$-U_{2}\left(\alpha_{1}, \alpha_{2}\right)=$?

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

Nash's Theorem

Theorem. Every finite strategic game has a mixed strategy Nash equilibrium.

- Note that it is essential that the game is finite
- So, there exists always a solution
- What is the computational complexity?
- This is an open problem! Not known to be NPhard, but there is no known polynomial time algorithm

The Support

- We call all pure actions a_{i} that are chosen with non-zero probability by α_{i} the support of the mixed strategy α_{i}

Lemma. Given a finite strategic game, α^{*} is a mixed strategy equilibrium if and only if for every player i every pure strategy in the support of $\alpha_{i}{ }^{*}$ is a best response to $\alpha_{-i}{ }^{*}$

Using the Support Lemma

- The Support Lemma can be used to characterize all Nash equilibria types in 2-person 2×2 action games.
> There are 4 potential Nash equilibria in pure strategies * Easy to check
> There are another 4 potential Nash equilibria types with a 1-support (pure) against 2-support mixed strategies
* Exists only if the payoff for the mixed strategy player is identical for both pure strategies and one of the corresponding pure strategy profiles is already a Nash equilibrium (follows from Support Lemma)
> There exists one other potential Nash equilibrium type with a 2-support against a 2 -support mixed strategy * Here we can use the Support Lemma to compute the NE (if there exists one)

Proving the Support Lemma

Assume that α^{*} is a Nash equilibrium with a_{j} being in its support but not being a best response to $\alpha_{-i}{ }^{*}$.

- This means, by reassigning the probability of a_{i} to the other actions in the support, one can get a higher payoff for player i.
- This implies α^{*} is not a Nash equilibrium \sim contradiction
\Leftarrow (Proving the contraposition): Assume that α^{*} is not a Nash equilibrium.
- This means that there exists α_{i} ' that is a better response than $\alpha_{i}{ }^{*}$ to $\alpha_{-i}{ }^{*}$.
- Then because of how U_{i} is computed, there must be an action a_{i}^{\prime} in the support of a_{i}^{\prime} that is a better response (higher utility) to α_{-i}^{*} than an action α_{i}^{*} in the support of α_{i}^{*}.
- This implies that there are actions in the support of $\alpha_{i}{ }^{*}$ that are not best responses to $\alpha_{-i}{ }^{*}$.

Conclusion

- Although Nash equilibria do not always exist, one can give a guarantee, when we randomize finite games
$>$ For every finite strategic game, there exists a Nash equilibrium in mixed strategies
- Actions in the support of mixed strategies in a NE are always best answers to the NE profile, and therefore have the same payoff \sim Support Lemma
- The Support Lemma can be used to determine mixed strategy NEs for 2-person games with 2×2 action sets
- In general, there is no poly-time algorithm known for computing a Nash equilibrium (and it is open whether this problem is NP-hard)
- In addition to pure and mixed NEs, there exists the notion of correlated NE, where you coordinate your action using an external randomized signal

