An Introduction to Game Theory Part II: Mixed and Correlated Strategies Bernhard Nebel

Randomizing Actions ...

- Since there does not seem to exist a rationale decision, it might be best to randomize strategies.
 Play Head with
- probability *p* and Tail with probability *1-p*
- Switch to expected utilities

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

Some Notation

- Let $G = (N, (A_i), (u_i))$ be a strategic game
- Then Δ(A_i) shall be the set of probability distributions over A_i – the set of mixed strategies α_i ∈ Δ(A_i)
- α_i(a_i) is the probability that a_i will be chosen in the mixed strategy α_i
- A profile $\alpha = (\alpha_i)$ of mixed strategies induces a probability distribution on A: $p(\alpha) = \prod_i \alpha_i(\alpha_i)$
- The expected utility is $U_i(\alpha) = \sum_{a \in A} p(a) u_i(a)$

Example of a Mixed Strategy

•	Let		Head	Tail	
	$- \alpha_1(H) = 2/3, \ \alpha_1(T) = 1/3 - \alpha_2(H) = 1/3, \ \alpha_2(T) = 2/3$				
•	Then -p(H,H) = 2/9 $- \dots$ $- U_1(\alpha_1, \alpha_2) = ?$ $- U_2(\alpha_1, \alpha_2) = ?$	Head	1,-1	-1,1	
		Tail	-1,1	1,-1	

Mixed Extensions

- The mixed extension of the strategic game $(N, (A_i), (u_i))$ is the strategic game $(N, \Delta(A_i), (U_i))$.
- The mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium of its mixed extension.
- Note that the Nash equilibria in pure strategies (as studied in the last part) are just a special case of mixed strategy equilibria.

Nash's Theorem

Theorem. Every finite strategic game has a mixed strategy Nash equilibrium.

- Note that it is essential that the game is finite
- So, there exists always a solution
- What is the computational complexity?
- This is an open problem! Not known to be NPhard, but there is no known polynomial time algorithm

The Support

- We call all pure actions a_i that are chosen with non-zero probability by α_i the support of the mixed strategy α_i
- **Lemma.** Given a finite strategic game, α^* is a *mixed strategy equilibrium* if and only if for every player *i every pure strategy in the support* of α_i^* is a best response to $\alpha_{\cdot i}^*$

Proving the Support Lemma

Assume that α^* is a Nash equilibrium with a_i being in its support but not being a best response to α_i^* .

- This means, by reassigning the probability of a, to the other actions in the support, one can get a higher payoff for player i.
- This implies α* is not a Nash equilibrium ~ contradiction
 (Proving the contraposition): Assume that α* is not a Nash equilibrium.
- This means that there exists α_i that is a better response than α^* to α_i^* .
- Then because of how U_i is computed, there must be an action a_i in the support of α_i that is a better response (higher utility) to α_{i} than an action α_i^* in the support of α_i^* .
- This implies that there are actions in the support of a_i* that are not best responses to a_{-i}*.

Conclusion

- Although Nash equilibria do not always exist, one can give a guarantee, when we randomize finite games: •
- For every finite strategic game, there exists a Nash equilibrium in mixed strategies
- Actions in the support of mixed strategies always best answers to the NE profile, and therefore have the same payoff ~ Support Lemma The Support Lemma can be used to determine mixed strategy NEs for 2-person games with 2x2 action sets .
- •
- In general, there is no poly-time algorithm known for computing a Nash equilibrium (and it is open whether this problem is NP-hard) •
- In addition to pure and mixed NEs, there exists the notion of correlated NE, where you coordinate your action using an external randomized signal