Strategic Game

- A strategic game G consists of
 - a finite set N (the set of players)
 - for each player $i \in N$ a non-empty set A_i (the set of actions or strategies available to player i), whereby $A = \bigcup_{i} A_i$
 - for each player $i \in N$ a function $u_i : A \to \mathbb{R}$ (the utility or payoff function)
 - $G = (N, (A_i), (u_i))$
- If A is finite, then we say that the game is **finite**

Playing the Game

- Each player i makes a decision which action to play: a_i
- All players make their moves simultaneously leading to the action profile $a^* = (a_1, a_2, \ldots, a_n)$
- Then each player gets the payoff $u_i(a^*)$
- Of course, each player tries to maximize its own payoff, but what is the right decision?
 - **Note:** While we want to maximize our payoff, we are not interested in harming our opponent. It just does not matter to us what he will get!
 - If we want to model something like this, the payoff function must be changed

Notation

- For 2-player games, we use a matrix, where the strategies of player 1 are the rows and the strategies of player 2 the columns
- The payoff for every action profile is specified as a pair x, y, whereby x is the value for player 1 and y is the value for player 2
- Example: For (T, R), player 1 gets x_{12}, and player 2 gets y_{12}

Example Game: Bach and Stravinsky

- Two people want to go together to a concert of music by either Bach or Stravinsky. Their main concern is to go out together, but one prefers, the other Stravinsky. **Will they meet?**
- This game is also called the **Battle of the Sexes**

<table>
<thead>
<tr>
<th></th>
<th>Bach</th>
<th>Stravinsky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bach</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Stravinsky</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Example Game: Hawk-Dove

- Two animals fighting over some prey.
- Each can behave like a dove or a hawk
- The best outcome is if oneself behaves like a hawk and the opponent behaves like a dove
- This game is also called **chicken**.

<table>
<thead>
<tr>
<th></th>
<th>Dove</th>
<th>Hawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dove</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Hawk</td>
<td>4,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Example Game: Prisoner’s Dilemma

- Two suspects in a crime are put into separate cells.
- If they both confess, each will be sentenced to 3 years in prison.
- If only one confesses, he will be freed.
- If neither confesses, they will both be convicted of a minor offense and will spend one year in prison.

<table>
<thead>
<tr>
<th></th>
<th>Don’t confess</th>
<th>Confess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t confess</td>
<td>3,3</td>
<td>0,4</td>
</tr>
<tr>
<td>Confess</td>
<td>4,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Solving a Game

- What is the right move?
- Different possible solution concepts
 - Elimination of strictly or weakly dominated strategies
 - Maximin strategies (for minimizing the loss in zero-sum games)
 - Nash equilibrium
- How difficult is it to compute a solution?
- Are there always solutions?
- Are the solutions unique?

Strictly Dominated Strategies

- Notation:
 - Let \(a = (a_i) \) be a strategy profile
 - \(a_{-i} = (a_1, ..., a_{i-1}, a_{i+1}, ..., a_n) \)
 - \((a_{-i}, a'_i) = (a_1, ..., a_{i-1}, a'_i, a_{i+1}, ..., a_n) \)
- Strictly dominated strategy:
 - An strategy \(a_j^* \in A_j \) is strictly dominated if there exists a strategy \(a_j' \) such that for all strategy profiles \(a \in A: u_j(a_{-j}, a_j') > u_j(a_{-j}, a_j^*) \)
- Of course, it is not rational to play strictly dominated strategies

Iterated Elimination of Strictly Dominated Strategies

- Since strictly dominated strategies will never be played, one can eliminate them from the game
- This can be done iteratively
- If this converges to a single strategy profile, the result is unique
- This can be regarded as the result of the game, because it is the only rational outcome

Iterated Elimination: Example

- Eliminate:
 - b4, dominated by b3
 - a4, dominated by a1
 - b3, dominated by b2
 - a1, dominated by a2
 - b1, dominated by b2
 - a3, dominated by a2
- Result: (a2,b2)

Iterated Elimination: Prisoner’s Dilemma

- Player 1 reasons that “not confessing” is strictly dominated and eliminates this option
- Player 2 reasons that player 1 will not consider “not confessing”. So he will eliminate this option for himself as well
- So, they both confess
Weakly Dominated Strategies

- Instead of strict domination, we can also go for weak domination:
 - An strategy \(a_j^* \in A_j \) is **weakly dominated** if there exists a strategy \(a_j \) such that for all strategy profiles \(a \in A \):
 \[
 u_j(a_j^*, a) \geq u_j(a_j, a) \\
 u_j(a_j^*, a) > u_j(a_j, a^*).
 \]

Results of Iterative Elimination of Weakly Dominated Strategies

- The result is not necessarily unique
- Example:
 - Eliminate
 - T (SM)
 - L (SR)
 - Result: (1,1)
 - Eliminate
 - B (SM)
 - R (SL)
 - Result: (2,1)

Existence of Dominated Strategies

- Dominating strategies are a convincing solution concept
- Unfortunately, often dominated strategies do not exist
- What do we do in this case?
 - Nash equilibrium

<table>
<thead>
<tr>
<th></th>
<th>Dove</th>
<th>Hawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dove</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Hawk</td>
<td>4,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Nash Equilibrium

- A **Nash equilibrium** is an action profile \(a^* \in A \) with the property that for all players \(i \in N \):
 \[
 u_i(a^*) = u_i(a^*, a) \forall a_j \in A_j
 \]
- In words, it is an action profile such that there is no incentive for any agent to deviate from it
- While it is less convincing than an action profile resulting from iterative elimination of dominated strategies, it is still a reasonable solution concept
- If there exists a unique solution from iterated elimination of strictly dominated strategies, then it is also a Nash equilibrium

Example Nash-Equilibrium: Prisoner's Dilemma

- Don’t – Don’t - not a NE
- Don’t – Confess (and vice versa) - not a NE
- Confess – Confess - NE

<table>
<thead>
<tr>
<th></th>
<th>Don't confess</th>
<th>Confess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don't confess</td>
<td>3,3</td>
<td>0,4</td>
</tr>
<tr>
<td>Confess</td>
<td>4,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Example Nash-Equilibrium: Hawk-Dove

- Dove-Dove: - not a NE
- Hawk-Hawk - not a NE
- Dove-Hawk - is a NE
- Hawk-Dove - is, of course, another NE
- So, NEs are not necessarily unique

<table>
<thead>
<tr>
<th></th>
<th>Dove</th>
<th>Hawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dove</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Hawk</td>
<td>4,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Auctions

- An object is to be assigned to a player in the set \{1, \ldots, n\} in exchange for a payment.
- Players' evaluation of the object is \(v_i\), and \(v_1 > v_2 > \ldots > v_n\).
- The mechanism to assign the object is a sealed-bid auction: the players simultaneously submit bids (non-negative real numbers).
- The object is given to the player with the lowest index among those who submit the highest bid in exchange for the payment.
- The payment for a first price auction is the highest bid.
- What are the Nash equilibria in this case?

Formalization

- Game \(G = (\{1, \ldots, n\}, (A_i), (u_i))\)
- \(A_i\): bids \(b_i \in \mathbb{R}^+\)
- \(u(b_i, b) = v_i - b_i\) if \(i\) has won the auction, 0 otherwise
- Nobody would bid more than his valuation, because this could lead to negative utility, and we could easily achieve 0 by bidding 0.

Nash Equilibria for First-Price Sealed-Bid Auctions

- The Nash equilibria of this game are all profiles \(b\) with:
 - \(b_i \leq b_i\) for all \(i \in \{2, \ldots, n\}\)
 - No \(i\) would bid more than \(v_i\) because it could lead to negative utility.
 - If a bid \(< v_i\) is higher than \(b_i\), player 1 could increase its utility by bidding \(v_i + \epsilon\).
 - \(v_i \geq b_i \geq v_j\)
 - Otherwise, player 1 either loses the bid (and could increase its utility by bidding more) or would have itself negative utility.
 - \(b_i = b_1\) for at least one \(j \in \{2, \ldots, n\}\)
 - Otherwise player 1 could have gotten the object for a lower bid.

Another Game: Matching Pennies

- Each of two people chooses either Head or Tail. If the choices differ, player 1 pays player 2 a euro; if they are the same, player 2 pays player 1 a euro.
- This is also a zero-sum or strictly competitive game.
- No NE at all! What shall we do here?

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Tail</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>

Conclusions

- Strategic games are one-shot games, where everybody plays its move simultaneously.
- The game outcome is the action profile resulting from the individual choices.
- Each player gets a payoff based on its payoff function and the resulting action profile.
- Iterated elimination of strictly dominated strategies is a convincing solution concept, but unfortunately, most of the time it does not yield a unique solution.
- Nash equilibrium is another solution concept: Action profiles, where no player has an incentive to deviate.
- It also might not be unique and there can be even infinitely many NEs.
- Also, there is no guarantee for the existence of a NE.