An Introduction to Game Theory Part I: Strategic Games

Bernhard Nebel

Strategic Game

- A strategic game G consists of
- a finite set N (the set of players)
- for each player $i \in N$ a non-empty set A_{i} (the set of actions or strategies available to player i), whereby $A=\Pi_{i} A_{i}$
- for each player $i \in N$ a function $u_{i}: A \rightarrow \mathbb{R}$ (the utility or payoff function)
- $G=\left(N,\left(A_{j}\right),\left(u_{i}\right)\right)$
- If A is finite, then we say that the game is finite

Example Game: Bach and Stravinsky

- Two people want to out together to a concert of music by either Bach or Stravinsky. Their main concern is to go out together, but one prefers, the other Stravinsky. Will they meet?
- This game is also called the Battle of the Sexes

	Bach	Stra- vinsky
Bach	2,1	0,0
Stra- vinsky	0,0	1,2

Example Game: Hawk-Dove

- Two animals fighting over some prey.
- Each can behave like a dove or a hawk
- The best outcome is if oneself behaves like a hawk and the opponent behaves like a dove
- This game is also called chicken.

	Dove	Hawk
Dove	3,3	1,4
Hawk	4,1	0,0

Example Game: Prisoner's Dilemma

- Two suspects in a crime are put into separate cells.
- If they both confess, each will be sentenced to 3 years in prison.
- If only one confesses, he will be freed.
- If neither confesses, they will both be convicted of a minor offense and will spend one year in prison.

	Don't confess	Confess
Don't confess	3,3	0,4
Confess	4,0	1,1

Strictly Dominated Strategies

- Notation:
- Let $a=\left(a_{i}\right)$ be a strategy profile
$-a_{-i}:=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots a_{n}\right)$
$-\left(a_{-i}, a_{j}^{\prime}\right):=\left(a_{1}, \ldots, a_{i-1}, a_{j}^{\prime}, a_{i+1}, \ldots a_{n}\right)$
- Strictly dominated strategy:
- An strategy $a_{j}{ }^{*} \in A_{j}$ is strictly dominated if there exists a strategy a_{j}^{\prime} such that for all strategy profiles $a \in A$:

$$
u_{j}\left(a_{-j}, a_{j}^{\prime}\right)>u_{j}\left(a_{-j}, a_{j}^{*}\right)
$$

- Of course, it is not rational to play strictly dominated strategies

Solving a Game

- What is the right move?
- Different possible solution concepts
- Elimination of strictly or weakly dominated strategies
- Maximin strategies (for minimizing the loss in zerosum games)
- Nash equilibrium
- How difficult is it to compute a solution?
- Are there always solutions?
- Are the solutions unique?

Weakly Dominated Strategies

- Instead of strict domination, we can also go for weak domination:
- An strategy $a_{j}{ }^{*} \in A_{j}$ is weakly dominated if there exists a strategy a_{j}^{\prime} such that for all strategy profiles $a \in A$:

$$
u_{j}\left(a_{-j}, a_{j}^{\prime}\right) \geq u_{j}\left(a_{-j}, a_{j}{ }^{*}\right)
$$

and for at least one profile $a \in A$:

$$
u_{j}\left(a_{-j}, a_{j}^{\prime}\right)>u_{j}\left(a_{-j}, a_{j}{ }^{*}\right) .
$$

Existence of Dominated Strategies

- Dominating strategies are a convincing solution concept
- Unfortunately, often dominated strategies do not exist
- What do we do in this case?
> Nash equilibrium

	Dove	Hawk
Dove	3,3	1,4
Hawk	4,1	0,0

Nash Equilibrium

- A Nash equilibrium is an action profile $\mathrm{a}^{*} \in \mathrm{~A}$ with the property that for all players $\mathrm{i} \in \mathrm{N}$: $u_{i}\left(a^{*}\right)=u_{i}\left(a^{*}{ }_{-}, a^{*}{ }_{i}\right) \geq u_{i}\left(a^{*}{ }_{-i}, a_{i}\right) \forall a_{i} \in A_{i}$
- In words, it is an action profile such that there is no incentive for any agent to deviate from it
- While it is less convincing than an action profile resulting from iterative elimination of dominated strategies, it is still a reasonable solution concept
- If there exists a unique solution from iterated elimination of strictly dominated strategies, then it is also a Nash equilibrium

Example Nash-Equilibrium: Prisoner's Dilemma

- Don't - Don't
- not a NE
- Don't - Confess (and vice versa)
- not a NE
- Confess - Confess

- NE

	Don't confess	Confess	
Don't confess	3,3	0,4	
		$\\|$	
Confess			
	4,0	1,1	

Example Nash-Equilibrium:

 Hawk-Dove- Dove-Dove:
- not a NE
- Hawk-Hawk
- not a NE
- Dove-Hawk
- is a NE
- Hawk-Dove
- is, of course, another NE
- So, NEs are not necessarily unique

Auctions

- An object is to be assigned to a player in the set $\{1, \ldots, n\}$ in exchange for a payment.
- Players i evaluation of the object is v_{i}, and $v_{1}>v_{2}>\ldots>$ v_{n}.
- The mechanism to assign the object is a sealed-bid auction: the players simultaneously submit bids (nonnegative real numbers)
- The object is given to the player with the lowest index among those who submit the highest bid in exchange for the payment
- The payment for a first price auction is the highest bid.
- What are the Nash equilibria in this case?
- Game $G=\left(\{1, \ldots, n\},\left(A_{i}\right),\left(u_{i}\right)\right)$
- A_{i} : bids $b_{i} \in \mathbb{R}^{+}$
- $u_{\lambda}\left(b_{-i}, b_{i}\right)=v_{i}-b_{i}$ if i has won the auction, 0 othwerwise
- Nobody would bid more than his valuation, because this could lead to negative utility, and we could easily achieve 0 by bidding 0 .

Nash Equilibria for First-Price Sealed-Bid Auctions

- The Nash equilibria of this game are all profiles b with:
$-b_{i} \leq b_{1}$ for all $i \in\{2, \ldots, n\}$
- No i would bid more than v_{2} because it could lead to negative utility
- If a b_{i} (with $<v_{2}$) is higher than b_{1} player 1 could increase its utility by bidding $v_{2}+\varepsilon$
- So i wins in all NEs
$-v_{1} \geq b_{1} \geq v_{2}$
- Otherwise, player 1 either looses the bid (and could increase its utility by bidding more) or would have itself negative utility
$-b_{j}=b_{1}$ for at least one $j \in\{2, \ldots, n\}$
- Otherwise player 1 could have gotten the object for a lower bid

Another Game: Matching Pennies

- Each of two people chooses either Head or Tail. If the choices differ, player 1 pays player 2 a euro; if they are the same, player 2 pays player 1 a euro.
- This is also a zero-sum or strictly competitive game
- No NE at all! What shall we do here?

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

Conclusions

- Strategic games are one-shot games, where everybody plays its move simultaneously
- The game outcome is the action profile resulting from the individual choices.
- Each player gets a payoff based on its payoff function and the resulting action profile.
- Iterated elimination of strictly dominated strategies is a convincing solution concept, but unfortunately, most of the time it does not yield a unique solution
- Nash equilibrium is another solution concept: Action profiles, where no player has an incentive to deviate
- It also might not be unique and there can be even infinitely many NEs.
- Also, there is no guarantee for the existence of a NE

