Advanced AI Techniques

I. Bayesian Networks / 1. Probabilistic Independence and Separation in Graphs

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme
Institute for Computer Science University of Freiburg http://www.informatik.uni-freiburg.de/

ALBERT-LUDWIGS-

1. Basic Probability Calculus

2. Separation in undirected graphs
3. Separation in directed graphs
4. Markov networks

5. Bayesian networks

Pain Weightloss			N		N			
	Y				Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 1: Joint probability distribution of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Marginal probability distributions

Definition 1. Let p be a the joint probability of the random variables $\mathcal{X}:=\left\{X_{1}, \ldots, X_{n}\right\}$ and $\mathcal{Y} \subseteq \mathcal{X}$ a subset thereof. Then

$$
p(\mathcal{Y}=y):=p^{\downarrow \mathcal{Y}}(y):=\sum_{x \in \operatorname{dom} \mathcal{X} \backslash \mathcal{Y}} p(\mathcal{X}=x, \mathcal{Y}=y)
$$

is a probability distribution of \mathcal{Y} called marginal probability distribution.

Example 1.

Vomiting	Y	N
Adeno Y	0.350	0.350
N	0.090	0.210

Pain	Y				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	N	Y	N	Y	N	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 2: Joint probability distribution of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Marginal probability distributions / example

Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].
Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute for Computer Science, University of Freiburg, Germany,

Definition 2. By $p>0$ we mean

$$
p(x)>0, \quad \text { for all } x \in \prod \operatorname{dom}(p)
$$

Then p is called non-extreme.

For a JPD p and a subset $\mathcal{Y} \subseteq \operatorname{dom}(p)$ of its variables with $p^{\backslash У}>0$ we define

$$
p^{\mid \mathcal{Y}}:=\frac{p}{p^{\downarrow \mathcal{Y}}}
$$

as conditional probability distribution of p w.r.t. \mathcal{Y}.

A conditional probability distribution w.r.t. \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y}, i.e.,

$$
\left(p^{\mid \mathcal{Y}}\right)^{\perp \mathcal{Y}} \equiv 1
$$

Example 2. Let p be the JPD

$$
p:=\left(\begin{array}{ll}
0.4 & 0.1 \\
0.2 & 0.3
\end{array}\right)
$$

on two variables R (rows) and C (columns) with the domains $\operatorname{dom}(R)=$ $\operatorname{dom}(C)=\{1,2\}$.
The conditional probability distribution w.r.t. C is

$$
p^{\mid C}:=\left(\begin{array}{ll}
2 / 3 & 1 / 4 \\
1 / 3 & 3 / 4
\end{array}\right)
$$

Chain rule

Lemma 1 (Chain rule). Let $X_{1}, X_{2}, \ldots, X_{n}$ be variables. Then

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=p\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \cdots p\left(X_{2} \mid X_{1}\right) \cdot p\left(X_{1}\right)
$$

Definition 3. Two sets \mathcal{X}, \mathcal{Y} of variables are called independent, when all pairs of events $\mathcal{X}=x$ and $\mathcal{Y}=y$ are independend, i.e.

$$
p(\mathcal{X}=x, \mathcal{Y}=y)=p(\mathcal{X}=x) \cdot p(\mathcal{Y}=y)
$$

for all x and y or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y)=p(\mathcal{X}=x)
$$

for y with $p(\mathcal{Y}=y)>0$.

Example 3. Let Ω be the cards in an ordinary deck and

- $R=$ true, if a card is royal,
- $T=$ true, if a card is a ten or a jack,
- $S=$ true, if a card is spade.

Cards for a single color:

A

S	R	T	$p(R, T \mid S)$
\mathbf{Y}	Y	Y	$1 / 13$
		N	$2 / 13$
	N	Y	$1 / 13$
		N	$9 / 13$
N	Y	Y	$3 / 39=1 / 13$
		N	$6 / 39=2 / 13$
	N	Y	$3 / 39=1 / 13$
		N	$27 / 39=9 / 13$

R	T	$p(R, T)$
\mathbf{Y}	\mathbf{Y}	$4 / 52=1 / 13$
	\mathbf{N}	$8 / 52=2 / 13$
N	\mathbf{Y}	$4 / 52=1 / 13$
	\mathbf{N}	$36 / 52=9 / 13$

Definition 4. Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be sets of variables.
\mathcal{X}, \mathcal{Y} are called conditionally independent given \mathcal{Z}, when for all events $\mathcal{Z}=z$ with $p(\mathcal{Z}=z)>0$ all pairs of events $\mathcal{X}=x$ and $\mathcal{Y}=y$ are conditionally independend given $\mathcal{Z}=z$, i.e.
$p(\mathcal{X}=x, \mathcal{Y}=y, \mathcal{Z}=z)=\frac{p(\mathcal{X}=x, \mathcal{Z}=z) \cdot p(\mathcal{Y}=y, \mathcal{Z}=z)}{p(\mathcal{Z}=z)}$
for all x, y and z (with $p(\mathcal{Z}=z)>0$), or equivalently

$$
p(\mathcal{X}=x \mid \mathcal{Y}=y, \mathcal{Z}=z)=p(\mathcal{X}=x \mid \mathcal{Z}=z)
$$

We write $I_{p}(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z}.

Conditionally independent variables
Example 4. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 4.

We show $I_{p}(\{L\},\{S\} \mid\{C\})$, i.e., that label and shape are conditionally independent given the color.

C	S	L	$p(L \mid C, S)$
black	square	1	$2 / 6=1 / 3$
		2	$4 / 6=2 / 3$
	round	1	$1 / 3$
	2	$2 / 3$	
white	square	1	$1 / 2$
	2	$1 / 2$	
	round	1	$1 / 2$
	2	$1 / 2$	

C	L	$p(L \mid C)$
black	1	$3 / 9=1 / 3$
	2	$6 / 9=2 / 3$
white	1	$2 / 4=1 / 2$
	2	$2 / 4=1 / 2$

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].

1. Basic Probability Calculus

2. Separation in undirected graphs

3. Separation in directed graphs
4. Markov networks

5. Bayesian networks

Definition 5. Let $G:=(V, E)$ be a graph. Let $Z \subseteq V$ be a subset of vertices. We say, two vertices $x, y \in V$ are useparated by Z in G, if every path from x to y contains some vertex of $Z(\forall p \in$ $G^{*}: p_{1}=x, p_{|p|}=y \Rightarrow \exists i \in\{1, \ldots, n\}$: $\left.p_{i} \in Z\right)$.

Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices X and Y are u-separated by Z in G, if every path from any vertex from X to any vertex from Y is separated by Z, i.e., contains some vertex of Z.

We write $I_{G}(X, Y \mid Z)$ for the statement, that X and Y are u-separated by Z in G.
I_{G} is called u-separation relation in G.

Figure 5: Example for u-separation [CGH97, p. 179].

Advanced AI Techniques / 2. Separation in undirected graphs
Separation in graphs (u-separation)

Figure 6: More examples for u-separation [CGH97, p. 179].

To test, if for a given graph $G=(V, E)$ two given sets $X, Y \subseteq V$ of vertices are u-separated by a third given set $Z \subseteq V$ of vertices, we may use standard breadth-first search to compute all vertices that can be reached from X (see, e.g., [OW02], [CLR90]).

```
l breadth-first search(G,X) :
2 border := X
3 reached :=\emptyset
4 while border }\not=\emptyset\underline{\mathrm{ do}
5 reached := reached }\cup\mathrm{ border
6 border := fan}\mp@subsup{G}{G}{(\mathrm{ border ) \ reached}
7 od
return reached
```

Figure 7: Breadth-first search algorithm for enumerating all vertices reachable from X.

For checking u-separation we have to tweak the algorithm

1. not to add vertices from Z to the border and
2. to stop if a vertex of Y has been reached.

1 check-u-separation (G, X, Y, Z) :
2 border $:=X$
3 reached $:=\emptyset$
4 while border $\neq \emptyset$ do
$5 \quad$ reached $:=$ reached \cup border
$6 \quad$ border $:=\operatorname{fan}_{G}$ (border) \backslash reached $\backslash Z$
$7 \quad$ if border $\cap Y \neq \emptyset$
8 return false
$9 \quad \underline{\mathbf{i}}$
10 od
11 return true
Figure 8: Breadth-first search algorithm for checking u-separation of X and Y by Z.

1. Basic Probability Calculus

2. Separation in undirected graphs
3. Separation in directed graphs
4. Markov networks

5. Bayesian networks

Chains

Definition 6. Let $G:=(V, E)$ be a directed graph. We can construct an undirected skeleton $u(G):=(V, u(E))$ of G by dropping the directions of the edges:
$u(E):=\{\{x, y\} \mid(x, y) \in E$ or $(y, x) \in E\}$
The paths on $u(G)$ are called chains of G :

$$
G^{\boldsymbol{\wedge}}:=u(G)^{*}
$$

i.e., a chain is a sequence of vertices that are linked by a forward or a backward edge. If we want to stress the directions of the linking edges, we denote a chain $p=\left(p_{1}, \ldots, p_{n}\right) \in G^{\boldsymbol{\Delta}}$ by

$$
p_{1} \leftarrow p_{2} \rightarrow p_{3} \leftarrow \cdots \leftarrow p_{n-1} \rightarrow p_{n}
$$

The notions of length, subchain, interior and proper carry over from undirepted patha to thaing

Definition 7. Let $G:=(V, E)$ be a directed graph. We call a chain

$$
p_{1} \rightarrow p_{2} \leftarrow p_{3}
$$

a head-to-head meeting.

Let $Z \subseteq V$ be a subset of vertices. Then a chain $p \in G^{\boldsymbol{\Delta}}$ is called blocked at position i by Z, if for its subchain $\left(p_{i-1}, p_{i}, p_{i+1}\right)$ there is
$\begin{cases}p_{i} \in Z, & \text { if not } \\ p_{i} \notin Z \cup \operatorname{anc}(Z), & \text { else }\end{cases}$

Figure 10: Chain (A, B, E, D, F) is blocked by $Z=\{B\}$ at 2.

Advanced AI Techniques / 3. Separation in directed graphs

Blocked chains / more examples

Figure 11: Chain (A, B, E, D, F) is blocked by $Z=\emptyset$ at 3 .

Figure 12: Chain (A, B, E, D, F) is not blocked by $Z=\{E\}$ at 3 .

The notion of blocking is choosen in a way so that chains model "flow of causal influence" through a causal network where the states of the vertices Z are already know.

1) Serial connection / intermediate cause:

2) Diverging connection / common cause:

3) Converging connection / common effect:

Models "discounting" [Nea03, p. 51].

Definition 8. Let $G:=(V, E)$ be a DAG.
As the moral graph of G we denote the undirected skeleton graph of G plus additional edges between each two parents of a vertex, i.e. $\operatorname{moral}(G):=\left(V, E^{\prime}\right)$ with

$$
E^{\prime}:=u(E) \cup\{\{x, y\} \mid \exists z \in V: x, y \in \operatorname{pa}(z)\}
$$

Let $G:=(V, E)$ be a DAG.
Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices X and Y are separated by Z in G, if
(i) every chain from any vertex from X to any vertex from Y is blocked by Z or equivalently
(ii) X and Y are u-separated by Z in the moral graph of the ancestral hull of $X \cup Y \cup Z$.

We write $I_{G}(X, Y \mid Z)$ for the statement, that X and Y are separated by Z in G.

Figure 15: Are the vertices A and D separated by C in G ?

Advanced AI Techniques / 3. Separation in directed graphs
Separation in DAGs (d-separation) / examplesUNIVERSITÄT FREIBURG

Figure 16: A and D are separated by C in G.

Separation in DAGs (d-separation) / more examplesversitit freiburg

Figure 17: A and D are not separated by $\{C, G\}$ in G.

To test, if for a given graph $G=(V, E)$ two given sets $X, Y \subseteq V$ of vertices are d-separated by a third given set
$Z \subseteq V$ of vertices, we may

- build the moral graph of the ancestral hull and
- apply the u-separation criterion.

```
l check-d-separation(G,X,Y,Z) :
2 G':=moral(anc}\mp@subsup{G}{G}{\prime}(X\cupY\cupZ)
3 return check-u-separation(G',X,Y,Z)
```

Figure 18: Algorithm for checking d-separation via u-separation in the moral graph.

A drawback of this algorithm is that we have to rebuild the moral graph of the ancestral hull whenever X or Y changes.

Checking d-separation
Instead of constructing a moral graph, we can modify a breadth-first search for chains to find all vertices not dseparated from X by Z in G.

The breadth-first search must not hop over head-to-head meetings with the middle vertex not in Z nor having an descendent in Z.

```
1 enumerate-d-separation \((G=(V, E), X, Z)\) :
2 borderForward := \(\emptyset\)
3 borderBackward \(:=X \backslash Z\)
4 reached \(:=\emptyset\)
5 while borderForward \(\neq \emptyset\) or borderBackward \(\neq \emptyset\) do
\(6 \quad\) reached \(:=\) reached \(\cup(\) borderForward \(\backslash Z) \cup\) borderBackward
\(7 \quad\) borderForward \(:=\) fanout \(_{G}(\) borderBackward \(\cup(\) borderForward \(\backslash Z)) \backslash\) reached
\(8 \quad\) borderBackward \(:=\operatorname{fanin}_{G}(\) borderBackward \(\cup(\) borderForward \(\cap(Z \cup \operatorname{anc}(Z)))) \backslash Z \backslash\) reached
od
return \(V \backslash\) reached
```

Figure 20: Algorithm for enumerating all vertices d-separated from X by Z in G via restricted breadth-first search (see [Nea03, p. 80-86] for another formulation).

1. Basic Probability Calculus

2. Separation in undirected graphs
3. Separation in directed graphs
4. Markov networks
5. Bayesian networks

Definition 9. An undirected graph $G:=$ (V, E) is called complete, if it contains all possible edges (i.e. if $E=\mathcal{P}^{2}(V)$).

Definition 10. Let $G:=(V, E)$ be a directed graph.
A bijective map

$$
\sigma:\{1, \ldots,|V|\} \rightarrow V
$$

is called an ordering of (the vertices of) G.

We can write an ordering as enumeration of V, i.e. as $v_{1}, v_{2}, \ldots, v_{n}$ with $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and $v_{i} \neq v_{j}$ for $i \neq j$.

Figure 21: Undirected complete graph with 6 vertices.

Topological orderings (1/2)

Definition 11. An ordering $\sigma=$ $\left(v_{1}, \ldots, v_{n}\right)$ is called topological ordering if
(i) all parents of a vertex have smaller numbers, i.e.
$\operatorname{fanin}\left(v_{i}\right) \subseteq\left\{v_{1}, \ldots, v_{i-1}\right\}, \quad \forall i=1, \ldots, n$
or equivalently
(ii) all edges point from smaller to larger numbers
$(v, w) \in E \Rightarrow \sigma^{-1}(v)<\sigma^{-1}(w), \quad \forall v, w \in V$
The reverse of a topological ordering e.g. got by using the fanout instead of the fanin - is called ancestral numbering.

In general there are several topological orderings of a DAG.

Figure 22: DAG with different topological orderings: $\sigma_{1}=(A, B, C)$ and $\sigma_{2}=(B, A, C)$. The ordering $\sigma_{3}=(A, C, B)$ is not topological.

Advanced AI Techniques / 4. Markov networks

Topological orderings (2/2)

Lemma 2. Let G be a directed graph. Then

$$
G \text { is acyclic }(a D A G) \Leftrightarrow G \text { has a topological ordering }
$$

1 topological-ordering $(G=(V, E))$:
2 choose $v \in V$ with fanout $(v)=\emptyset$
$3 \sigma(|V|):=v$
$\left.4 \sigma\right|_{\{1, \ldots,|V|-1\}}:=\operatorname{topological-ordering}(G \backslash\{v\})$
5 return σ
Figure 23: Algorithm to compute a topologcial ordering of a DAG.

Exercise: write an algorithm for checking if a given directed graph is a acyclic.

Definition 12. A DAG $G:=(V, E)$ is

 called complete, if(i) it has a topological ordering $\sigma=$ $\left(v_{1}, \ldots, v_{n}\right)$ with $\operatorname{fanin}\left(v_{i}\right)=\left\{v_{1}, \ldots, v_{i-1}\right\}, \quad \forall i=1, \ldots$, or equivalently
(ii) it has exactly one topological ordering
or equivalently
(iii) every additional edge introduces a cycle.

Figure 24: Complete DAG with 6 vertices. Its topological ordering is $\sigma=(A, B, C, D, E, F)$.

Graph representations of ternary relations on \mathcal{P} (LSyiversitã freiburg

Definition 13. Let V be a set and I a ternary relation on $\mathcal{P}(V)$ (i.e. $I \subseteq$ $\left.\mathcal{P}(V)^{3}\right)$. In our context I is often called an independency model.

Let G be a graph on V (undirected or DAG).
G is called a representation of I, if
$I_{G}(X, Y \mid Z) \Rightarrow I(X, Y \mid Z) \quad \forall X, Y, Z \subseteq V$
A representation G of I is called faithful, if
$I_{G}(X, Y \mid Z) \Leftrightarrow I(X, Y \mid Z) \quad \forall X, Y, Z \subseteq V$
Representations are also called independency maps of I or markov w.r.t. I, faithful representations are also called perfect maps of I.

Figure 25: Non-faithful representation of

$$
\begin{aligned}
I:=\{ & (A, B \mid\{C, D\}),(B, C \mid\{A, D\}) \\
& (B, A \mid\{C, D\}),(C, B \mid\{A, D\})\}
\end{aligned}
$$

Figure 26: Faithful representation of I. Which I?

Faithful representations

In G also holds
$I_{G}(B,\{A, C\} \mid D), I_{G}(B, A \mid D), I_{G}(B, C \mid D)$, so G is not a representation of

$$
\begin{aligned}
I:= & \{(A, B \mid\{C, D\}),(B, C \mid\{A, D\}), \\
& (B, A \mid\{C, D\}),(C, B \mid\{A, D\})\}
\end{aligned}
$$

at all. It is a representation of

Figure 27: Faithful representation of J.

$$
\begin{aligned}
& J:=\{(A, B \mid\{C, D\}),(B, C \mid\{A, D\}),(B,\{A, C\} \mid D),(B, A \mid D),(B, C \mid D), \\
&B, A \mid\{C, D\}),(C, B \mid\{A, D\}),(\{A, C\}, B \mid D),(A, B \mid D),(C, B \mid D)\}
\end{aligned}
$$

and as all independency statements of J hold in G, it is faithful.

For a complete undirected graph or a complete DAG $G:=(V, E)$ there is

$$
I_{G} \equiv \text { false },
$$

i.e. there are no triples $X, Y, Z \subseteq V$ with $I_{G}(X, Y \mid Z)$. Therefore G represents any independency model I on V and is called trivial representation.

There are independency models without faithful representation.

Figure 28: Independency model

$$
I:=\{(A, B \mid\{C, D\})\}
$$

without faithful representation.

Minimal representations

Definition 14. A representation G of I is called minimal, if none of its subgraphs omitting an edge is a representation of I.

Figure 29: Different minimal undirected representations of the independency model

$$
\begin{aligned}
I:=\{ & (A, B \mid\{C, D\}),(A, C \mid\{B, D\}) \\
& (B, A \mid\{C, D\}),(C, A \mid\{B, D\})\}
\end{aligned}
$$

Lemma 3 (uniqueness of minimal undirected representation).

 An independency model I has exactly one minimal undirected representation, if and only if it is(i) symmetric: $I(X, Y \mid Z) \Rightarrow I(Y, X \mid Z)$.
(ii) decomposable: $I(X, Y \mid Z) \Rightarrow I\left(X, Y^{\prime} \mid Z\right) \quad$ for any $Y^{\prime} \subseteq Y$
(iii) intersectable: $I\left(X, Y \mid Y^{\prime} \cup Z\right)$ and $I\left(X, Y^{\prime} \mid Y \cup Z\right) \Rightarrow I(X, Y \cup$ $\left.Y^{\prime} \mid Z\right)$
Then this representation is $G=(V, E)$ with

$$
E:=\left\{\{x, y\} \in \mathcal{P}^{2}(V) \mid \operatorname{not} I(x, y \mid V \backslash\{x, y\}\}\right.
$$

Minimal representations (2/2)

Example 5.

$$
\begin{aligned}
I:= & \{(A, B \mid\{C, D\}),(A, C \mid\{B, D\}),(A,\{B, C\} \mid D),(A, B \mid D),(A, C \mid D) \\
& B, A \mid\{C, D\}),(C, A \mid\{B, D\}),(\{B, C\}, A \mid D),(B, A \mid D),(C, A \mid D)\}
\end{aligned}
$$

is symmetric, decomposable and intersectable.

Its unique minimal undirected representation is

If a faithful representation exists, obviously it is the unique minimal representation, and thus can be constructed by the rule in lemma 3.

Definition 15. We say, a graph represents a JPD p, if it represents the conditional independency relation I_{p} of p.

General JPDs may have several minimal undirected representations (as they may violate the intersection property).

Non-extreme JPDs have a unique minimal undirected representation.

To compute this representation we have to check $I_{p}(X, Y \mid V \backslash\{X, Y\})$ for all pairs of variables $X, Y \in V$, i.e.

$$
p \cdot p^{\downarrow V \backslash\{X, Y\}}=p^{\downarrow V \backslash\{X\}} \cdot p^{\downarrow V \backslash\{Y\}}
$$

Then the minimal representation is the complete graph on V omitting the edges $\{X, Y\}$ for that $I_{p}(X, Y \mid V \backslash\{X, Y\})$ holds.

Example 6. Let p be the JPD on $V:=\mid$ Its marginals are: $\{X, Y, Z\}$ given by:

Z	X	Y	$p(X, Y, Z)$
0	0	0	0.024
0	0	1	0.056
0	1	0	0.036
0	1	1	0.084
1	0	0	0.096
1	0	1	0.144
1	1	0	0.224
1	1	1	0.336

Checking $p \cdot p^{L V \backslash\{X, Y\}}=p^{\lfloor V \backslash\{X\}}$. $p^{\perp V \backslash\{Y\}}$ one finds that the only independency relations of p are $I_{p}(X, Y \mid Z)$ and $I_{p}(Y, X \mid Z)$.

Example 6 (cont.).

Z	X	Y	$p(X, Y, Z)$
0	0	0	0.024
0	0	1	0.056
0	1	0	0.036
0	1	1	0.084
1	0	0	0.096
1	0	1	0.144
1	1	0	0.224
1	1	1	0.336

Checking $p \cdot p^{\downarrow V \backslash\{X, Y\}}=p^{\downarrow V \backslash\{X\}}$. $p^{\downarrow V \backslash\{Y\}}$ one finds that the only independency relations of p are $I_{p}(X, Y \mid Z)$ and $I_{p}(Y, X \mid Z)$.

Thus, the graph

represents p, as its independency model is $I_{G}:=\{(X, Y \mid Z),(Y, X \mid Z)\}$.

As for p only $I_{p}(X, Y \mid Z)$ and $I_{p}(Y, X \mid Z)$ hold, G is a faithful representation.

Definition 16. A pair $\left(G,\left(\psi_{C}\right)_{C \in \mathcal{C}_{G}}\right)$ consisting of
(i) an undirected graph G on a set of variables V and
(ii) a set of potentials

$$
\psi_{C}: \prod_{X \in C} \operatorname{dom}(X) \rightarrow \mathbb{R}_{0}^{+}, \quad C \in \mathcal{C}_{G}
$$

on the cliques ${ }^{1}$) of G (called clique potentials)
is called a markov network.
${ }^{1)}$ on the product of the domains of the variables of each clique.

Thus, a markov network encodes
(i) a joint probability distribution factorized as

$$
p=\left(\prod_{C \in \mathcal{C}_{G}} \psi_{C}\right)^{1 \emptyset}
$$

and
(ii) conditional independency statements

$$
I_{G}(X, Y \mid Z) \Rightarrow I_{p}(X, Y \mid Z)
$$

G represents p, but not necessarily faithfully.

Advanced AI Techniques / 4. Markov networks

Markov networks / examples

Figure 30: Example for a markov network.

1. Basic Probability Calculus

2. Separation in undirected graphs
3. Separation in directed graphs
4. Markov networks

5. Bayesian networks

Lemma 4 (criterion for DAG-representation). Let p be a joint probability distribution of the variables V and G be a graph on the vertices V. Then:
G represents $p \Leftrightarrow v$ and nondesc (v) are conditionally independent given $\mathrm{pa}(v)$ for all $v \in V$, i.e.,

$$
I_{p}(\{v\}, \operatorname{nondesc}(v) \mid \operatorname{pa}(v)), \quad \forall v \in V
$$

Figure 31: Parents of a vertex (orange).

Advanced AI Techniques / 5. Bayesian networks

Example for a not faithfully DAG-representable independencyenqoéełREIBURG

Probability distributions may have no faithful DAGrepresentation.

Example 7. The independency model

$$
I:=\{I(x, y \mid z), I(y, x \mid z), I(x, y \mid w), I(y, x \mid w)\}
$$

does not have a faithful DAG-representation. [CGH97, p. 239]

Exercise: compute all minimal DAG-representations of I using lemma 5 and check if they are faithful.

Minimal DAG-representations

Lemma 5 (construction and uniqueness of minimal DAG-representation, [VP90

 Let I be an independence model of a JPD p. Then:(i) A minimal DAG-representation can be constructed as follows: Choose an arbitrary ordering $\sigma:=\left(v_{1}, \ldots, v_{n}\right)$ of V. Choose a minimal set $\pi_{i} \subseteq\left\{v_{1}, \ldots, v_{i-1}\right\}$ of σ-precursors of v_{i} with

$$
I\left(v_{i},\left\{v_{1}, \ldots, v_{i-1}\right\} \backslash \pi_{i} \mid \pi_{i}\right)
$$

Then $G:=(V, E)$ with

$$
E:=\left\{\left(w, v_{i}\right) \mid i=1, \ldots, n, w \in \pi_{i}\right\}
$$

is a minimal DAG-representation of p.
(ii) If p also is non-extreme, then the minimal representation G is unique up to ordering σ.

Advanced AI Techniques / 5. Bayesian networks

Minimal DAG-representations / example

$$
I:=\{(A, C \mid B),(C, A \mid B)\}
$$

Figure 32: Minimal DAG-representations of I [CGH97, p. 240].

Representations always exist (e.g., trivial).

Minimal representations always exist
(e.g., start with trivial and drop edges successively).

| | Markov network (undirected) | | Bayesian network (directed) | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | minimal | faithful | minimal | faithful |
| general JPD | may not be | may not | may not be | may not |
| | unique | exist | unique | exist |
| non-extreme JPD | unique | may not
 exist | unique up | may not |
| | | to ordering | exist | |

Definition 17. A pair $\left(G:=(V, E),\left(p_{v}\right)_{v \in V}\right)$ consisting of
(i) a directed graph G on a set of variables V and
(ii) a set of conditional probability distributions

$$
p_{X}: \operatorname{dom}(X) \times \prod_{Y \in \operatorname{pa}(X)} \operatorname{dom}(Y) \rightarrow \mathbb{R}_{0}^{+}
$$

at the vertices $X \in V$ conditioned on its parents (called (conditional) vertex probability distributions) is called a bayesian network.
Thus, a bayesian network encodes
(i) a joint probability distribution factorized as

$$
p=\prod_{X \in V} p(X \mid \operatorname{pa}(X))
$$

(ii) conditional independency statements

$$
I_{G}(X, Y \mid Z) \Rightarrow I_{p}(X, Y \mid Z)
$$

G represents p, but not necessarily faithfully.

Figure 33: Example for a bayesian network.

Advanced AI Techniques / 5. Bayesian networks

Types of probabilistic networks

Figure 34: Types of probabilistic networks.
[BK02] Christian Borgelt and Rudolf Kruse. Graphical Models. Wiley, New York, 2002.
[CGH97] Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. Expert Systems and Probabilistic Network Models. Springer, New York, 1997.
[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.
[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
[OW02] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen. Spektrum Verlag, Heidelberg, 2002.
[VP90] Thomas Verma and Judea Pearl. Causal networks: semantics and expressiveness. In Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal, and John F. Lemmer, editors, Uncertainty in Artificial Intelligence 4, pages 69-76. North-Holland, Amsterdam, 1990.

