# Advanced Artificial Intelligence 

## Part II. Statistical NLP

Probabilistic Logic Learning

## Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Many slides taken from Kristian Kersting and for Logic From Peter Flach's Simply Logical

## Overview

- Expressive power of PCFGs, HMMs, BNs still limited
- First order logic is more expressive
- Why not combine logic with probabilities?
- Probabilistic logic learning
- Short recap of logic (programs)
- Stochastic logic programs
- Extend PCFGs
- Bayesian logic programs
- Extend Bayesian Nets
- Logical HMMs
- Extend HMMs


## Context

One of the key open questions of artificial intelligence concerns

"probabilistic logic learning",

i.e. the integration of
probabilistic reasoning with
first order logic representations and machine learning.


## So far

- We have largely been looking at probabilistic representations and ways of learning these from data
- BNs, HMMs, PCFGs
- Now, we are going to look at their expressive power, and make traditional probabilistic representations more expressive using logic
- Probabilistic First Order Logics
- Lift BNs, HMMs, PCFGs to more expressive frameworks
- Upgrade also the underlying algorithms


## London Underground example



## London Underground in Prolog (1)

connected(bond_street,oxford_circus,central). connected(oxford_circus,tottenham_court_road,central). connected(bond_street,green_park,jubilee). connected(green_park,charing_cross,jubilee). connected(green_park,piccadilly_circus,piccadilly). connected(piccadilly_circus,leicester_square,piccadilly). connected(green_park,oxford_circus,victoria). connected(oxford_circus,piccadilly_circus,bakerloo). connected(piccadilly_circus,charing_cross,bakerloo). connected(tottenham_court_road,leicester_square,northern). connected(leicester_square,charing_cross,northern).

Symmetric facts now shown !!!

## London Underground in Prolog (2)

Two stations are nearby if they are on the same line with at most one other station in between (symmetric facts not showr
nearby(bond_street,oxford_circus).
nearby(oxford_circus,tottenham_court_road).
nearby(bond_street,tottenham_court_road).
nearby(bond_street,green_park).
nearby(green_park,charing_cross).
nearby(bond_street,charing_cross).
nearby(green_park,piccadilly_circus).
or better
nearby $(X, Y)$ :-connected $(X, Y, L)$.
nearby (X,Y):-connected(X,Z,L),connected(Z,Y,L).
Facts: unconditional truths
Rules/Clauses: conditional truths
Both definitions are equivalent.
"Peter likes anybody who is his student."


Clauses are universally quantified !!!
:- denotes implication

## Recursion (2)

A station is reachable from another if they are on the same line, or with one, two, ... changes:
reachable $(X, Y)$ :-connected $(X, Y, L)$.
reachable(X,Y):-connected(X,Z,L1),connected(Z,Y,L2). reachable(X,Y):-connected(X,Z1,L1),connected(Z1,Z2,L2) connected(Z2,Y,L3).
or better
reachable( $\mathrm{X}, \mathrm{Y}$ ):-connected $(\mathrm{X}, \mathrm{Y}, \mathrm{L})$. reachable(X,Y):-connected(X,Z,L),reachable(Z,Y).

## Substitutions

- A substitution maps variables to terms:
- \{S->maria\}
- A substitution can be applied to a clause:
- likes(peter,maria):-student_of(maria,peter).
- The resulting clause is said to be an instance of the original clause, and a ground instance if it does not contain variables.
- Each instance of a clause is among its logical consequences.


## Structured terms (2)

```
reachable(X,Y, noroute) :-connected (X,Y,L) .
reachable(X,Y,route(Z,R)):-connected (X,Z,L),
    reachable(Z,Y,R) .
?-reachable(oxford_circus, charing_cross,R).
R = route (tottenham_court_road,route(leicester_square,noroute));
R = route(piccadilly_circus,noroute);
R = route (picadilly_circus,route(leicester_square,noroute))
```



## Lists (3)

```
reachable(X,Y,[]):-connected (X,Y,L).
reachable(X,Y,[Z|R]):-connected(X,Z,L),
    reachable(Z,Y,R).
?-reachable(oxford_circus,charing_cross,R).
R = [tottenham_court_road,leicester_square];
R = [piccadilly_circus];
R = [picadilly_circus,leicester_square]
```



## Answering queries (1)

- Query: which station is nearby Tottenham Court Road?
?- nearby (tottenham_court_road, W).
- Prefix ? - means it's a query and not a fact.
- Answer to query is:
\{W -> leicester_square\}
a so-called substitution.
- When nearby defined by facts, substitution found by unification.



## Recall from Al course

- Unification to unify two different terms
- Resolution inference rule
- Refutation proofs, which derive the empty clause
- SLD-tree, which summarizes all possible proofs (left to right) for a goal

```
student_of(X,T) :-follows (X,C),teaches (T,C).
follows (paul,computer_science).
follows (paul,expert_systems).
follows(maria,ai_techniques).
teaches(adrian,expert systems).
teaches(peter,ai techniques).
teaches (peter,computer_science).
```

?-student_of(S,peter)
:-teaches (peter, computer_science) $\mid$ :-teaches (peter, ai_techniques)
:-teaches (peter, computer_science) $\quad:-$ teaches (peter, ai_techniques)

## SLD-tree: one path for each proof-tree

## The least Herbrand model

- Definition:
- The set of all ground facts that are logically entailed by the program
- All ground facts not in the LHM are false ...
- LHM be computed as follows:
- M0 = \{\}; M1 = \{ true \}; $i=0$
- while $\mathrm{Mi}==\mathrm{Mi}+1$ do
- $\mathrm{i}:=\mathrm{i}+1$;
- Mi := $\{\mathrm{h} \theta \mid \mathrm{h}:-\mathrm{b} 1, \ldots$, bn is clause and there is a substitution $\theta$ such that all bi $\theta \in \mathrm{Mi}-1\}$
- Mi contains all true facts, all others are false


## Example LHM

$K B: \quad p(a, b) . \quad a(X, Y):-p(X, Y)$. $p(b, c) \quad a(X, Y):-p(X, Z), a(Z, Y)$.
M0 = emtpy;
M1 $=\{$ true $\}$
M2 $=\{$ true, $p(a, b), p(b, c)\}$
M3 $=$ M2 U $\{a(a, b), a(b, c)\}$
M4 $=$ M3 $\cup\{a(a, c)\}$
M5 = M4

## Stochastic Logic Programs

- Recall :
- Prob. Regular Grammars
- Prob. Context-Free Grammars
- What about Prob. Turing Machines ? Or Prob. Grammars ?
- Stochastic logic programs combine probabilistic reasoning in the style of PCFGs with the expressive power of a programming language.


## Recall PCFGs



## We defined

- $P($ tree $\mid G)=\prod_{i} p_{i}^{c_{i}}$ where $i$ ranges over all rules $i$ used to derive tree, and $c_{i}$ is the number of times they were applied
- $P\left(w_{1 m} \mid G\right)=\sum_{j} P\left(\right.$ tree $\left._{j} \mid G\right)$ where $j$ ranges over all possible parse trees for $w_{1 m}$.
- Key concept : probabilities over derivations !!!


## Stochastic Logic Programs

- Correspondence between CFG - SLP
- Symbols - Predicates
- Rules - Clauses
- Derivations - SLD-derivations/Proofs
- So,
- a stochastic logic program is an annotated logic program.
- Each clause has an associated probability label. The sum of the probability labels for clauses defining a particular predicate is equal to 1 .


## An Example



## Example

```
1 : sentence (A, B) \leftarrow noun - phrase (C, A, D), verb - phrase(C,D,B).
1: noun - phrase (A, B, C) \leftarrow article(A, B, D), noun (A, D, C).
1: verb - phrase (A,B,C) \leftarrow intransitive - verb (A, B, C).
1/3: article(singular, A, B) \leftarrowterminal}(A, a,B)
1/3 : article(singular, A, B) \leftarrowterminal(A, the, B).
1/3 : article(plural, A, B) \leftarrowterminal}(\textrm{A},\mathrm{ the, B).
1/2 : noun(singular, A, B) \leftarrow terminal}(A,\mathrm{ turtle, B).
1/2 : noun(plural, A, B) \leftarrowterminal}(A\mathrm{ , turtles, B).
1/2 : intransitive - verb(singular, A, B) \leftarrowterminal(A, sleeps, B).
1/2 : intransitive - verb(plural, A, B) }\leftarrow\mathrm{ terminal (A, sleep, B).
1: terminal ([A|B], A, B)}
```


## s([the,turtle,sleeps],[]) ?

## SLPs: Key Ideas

- let us consider goals $g$ (atoms, queries) of the form $p\left(X_{1}, \ldots, X_{n}\right)$ with the $X_{i}$ different variables; corresponds to a non-terminal in a PCFG
- $P_{D}($ der $g \mid S L P)=\prod_{i} p_{i}^{c_{i}}$ where $i$ ranges over all clauses $i$ used in the derivation der $g$ for goal $g$ and $c_{i}$ is the number of times $i$ was applied; so far this is similar as for PCFGs
- key difference with PCFGs:
- derivations in PCFGs always succeed,
- proofs in SLPs can fail;
- refutations are successful proofs
- we are interested in the conditional probability of a derivation given that we know it is succesful / a refutation
- Therefore, define $P_{R}($ ref $g \mid S L P)=\frac{P_{D}(\text { ref } g)}{\sum_{j} P_{D}\left(\text { ref } f_{j} g \mid S L P\right)}$, the probability $P_{R}$ of refutation ref of $g$; where $j$ ranges over all refutations ref $f_{j}$ of the goal $g$
- For ground atoms $g \theta$ (where $\theta$ is the substitution grounding $g$ ), define : $P_{A}(g \theta \mid S L P)=\sum_{j} P_{R}\left(r e f_{j} g \theta \mid S L P\right)$ where $r e f_{j}$ ranges over all possible refutations for $g \theta$.


## Example

- Cards :
- $\operatorname{card}(R, S)$ - no proof with $R$ in $\{a, 7,8,9 \ldots\}$ and $S$ in $\{d, h, s, c\}$ fails
- For each card, there is a unique refutation
- So,
$P_{A}(\operatorname{card}(r, s))=P_{D}($ derivation $\operatorname{card}(r, s))$
$=P_{R}($ refutation $\operatorname{card}(r, s))=1 / 32$


## Consider

- same_suit(S,S) :suit(S), suit(S).
- In total 16 possible derivations, only 4 will succeed, so

$$
\begin{aligned}
& P_{D}(\text { derivation samesuit }(S 1, S 2))=1 / 16 \\
& P_{R}(\text { refutation } \operatorname{samesuit}(s, s))=1 / 4 \\
& P_{A}(\operatorname{samesuit}(s, s))=1 / 4
\end{aligned}
$$

## Another example (due to Cussens)

$$
\begin{array}{lll}
0.4: s(X):-p(X), p(X) . & 0.3: p(a) . & 0.2: q(a) . \\
0.6: s(X):-q(X) . & 0.7: p(b) . & 0.8: q(b) .
\end{array}
$$



## Questions we can ask (and answer) about SLPs

- Compute the probability $P_{A}(a)$ of a ground atom $a$
- Find the most likely refutation $r$ of a goal $g$, i.e. $\operatorname{argmax}_{r e f} P_{R}($ ref $g)$
- For a given SLP and set of atoms $A t$ for a goal $g$, compute the maximum likelihood parameters $\lambda$ , i.e. $\operatorname{argmax}_{\lambda}\left(\prod_{a \in A t} P_{A}(a \mid S L P(\lambda))\right.$


## Answers

- The algorithmic answers to these questions, again extend those of PCFGs and HMMs, in particular,
- Tabling is used (to record probabilities of partial proofs and intermediate atoms)
- Failure Adjusted EM (FAM) is used to solve parameter re-estimation problem
- Additional hidden variables range over
- Possible refutations and derivations for observed atoms
- Topic of recent research
- Freiburg : learning from refutations (instead of atoms), combined with structure learning


## Sampling

- PRGs, PCFGs, and SLPs can also be used for sampling sentences, ground atoms that follow from the program
- Rather straightforward. Consider SLPs:
- Probabilistically explore SLD-tree
- At each step, select possible resolvents using the probability labels attached to clauses
- If derivation succeeds, return corresponding (ground) atom
- If derivation fails, then restart.


## Bayesian Networks <br> [Pearl 91]

Compact representation of joint probability distributions
P(E,B,A,M,J)

Qualitative part: Directed acyclic graph

- Nodes - random vars.
- Edges - direct influence

Together:
Define a unique distribution
JohnCalls
Quantitative part:
Set of conditional probability distributions in a compact, factored form

$$
P(E, B, A, M, J)=P(E) * P(B) * P(A \mid E, B) * P(M \mid A) * P(J \mid A)
$$

## Bayesian Networks

burglary. earthquake.
alarm :- burglary, earthquake. marycalls :- alarm.
johncalls :- alarm.


$$
\begin{aligned}
P(j)= & P(j \mid a) * P(m \mid a) * P(a \mid e, b) * P(e) * P(b) \\
& +P(j \mid a) * P(m \mid a) * P(a \mid e, \bar{b}) \text { * } P(e) * P(\bar{b}) \\
& \ldots \\
& +P(\overline{\mathrm{j}} \overline{\mathrm{a}}) * P(\overline{\mathrm{~m}} \mid \overline{\mathrm{a}}) \text { * } P(\overline{\mathrm{a}} \mid \overline{\mathrm{e}}, \overline{\mathrm{~b}}) \text { * } P(\overline{\mathrm{e}}) \text { * } P(\overline{\mathrm{~b}})
\end{aligned}
$$

## Expressiveness Bayesian Nets

- A Bayesian net defines a probability distribution over a propositional logic
- Essentially, the possible states (worlds) are propositional interpretations
- But propositional logic is severely limited in expressive power, therefore consider combining BNs with logic programs
- Bayesian logic programs
- Actually, a BLP + some background knowledge generates a BN
- So, BLP is a kind of BN template !!!


## Bayesian Logic Programs (BLPs)



## Bayesian Logic Programs (BLPs)



## Bayesian Logic Programs (BLPs)



## $\operatorname{mc}(a n n)$

Bayesian Logic Programs (BLPs) ${ }_{\mathrm{mc}(\mathrm{utta}) .}^{\mathrm{pc}(\mathrm{ann}) .}$
father (rex, fred). father (brian, doro). father (fred,henry).
mother (ann, fred). mother (utta, doro). mother (doro, henry).
pc(utta).
mc(brian).
pc(brian).
$\mathrm{mc}(\mathrm{rex})$.
mc(Person) | mother (Mother,Person), pc(Mother),mc (Mothepc(rex).
pc(Person) | father(Father,Person), pc(Father),mc(Father). bt(Person) | pc(Person),mc(Person).


## Bayesian logic programs

- Computing the ground BN (the BN that defines the semantics)
- Compute the least Herbrand Model of the BLP
- For each clause $\mathrm{H} \mid \mathrm{B} 1, \ldots \mathrm{BN}$ with CPD
- if there is a substitution $\theta$ such that $\{\mathrm{H} \theta, \mathrm{B} 1 \theta, \ldots, \mathrm{BN} \theta\}$ subset LHM, then H $\theta$ 's parents include $\mathrm{B} 1 \theta, \ldots, \mathrm{BN} \theta$, and with CPD specified by the clause
- Delete logical atoms from BN (as their truth-value is known) - e.g. mother, father in the example
- Possibly apply aggregation and combining rules
\& For specific queries, only part of the resulting BN is necessary, the support net, cf. Next slides


## Procedural Semantics

$$
\mathbf{P}(\mathrm{bt}(\mathrm{ann})) \boldsymbol{?}
$$



## Procedural Semantics

Bayes‘ rule
$\mathbf{P}(\mathrm{bt}(\mathrm{ann}) \mid \mathrm{bt}(\mathrm{fred}))=$
$\mathbf{P}(\mathrm{bt}(\mathrm{ann})$, bt (fred))

$$
\mathbf{P ( b t}(f r e d))
$$

$$
\mathbf{P}(\mathrm{bt}(\mathrm{ann}), \mathrm{bt}(\mathrm{fred})) \boldsymbol{?}
$$



## Combining Rules



- Any algorithm which
- has an empty output if and only if the input is empty
- combines a set of CPDs into a single (combined) CPD
- E.g. noisy-or

Noisy-or: $P\left(A=\right.$ true $\left.\mid V_{1}, \ldots, V_{n}\right)=1-\prod_{V_{i}=\text { true }} P\left(A=\right.$ false $\mid V_{i}=$ true $)$
all causes can be independently inhibited

## Combining Partial Knowledge



- variable \# of parents for prepared/2 due to read/2
- whether a student prepared a topic depends on the books she read
- CPD only for one book-topic pair


## Summary BLPs



## Bayesian Logic Programs - Examples



## Bayesian Logic Programs (BLPs)

- Unique probability distribution over Herbrand interpretations
- Finite branching factor, finite proofs, no selfdependency
- Highlight
- Separation of qualitative and quantitative parts
- Functors
- Graphical Representation
- Discrete and continuous RV
- BNs, DBNs, HMMs, SCFGs, Prolog ...
- Turing-complete programming language
- Learning


## Learning BLPs from Interpretations

```
Model(1)
earthquake=yes,
burglary=no,
alarm=?,
marycalls=yes,
johncalls=no
```



## Model(3)

earthquake=?,
burglary=?,
alarm=yes,
marycalls=yes,
johncalls=yes

## Learning BLPs from Interpretations

## Data case:

- Random Variable + States $=($ partial $)$ Herbrand interpretation



## Parameter Estimation - BLPs



## Parameter Estimation - BLPs

- Estimate the CPD $\theta$ entries that best fit the data
- „Best fit": ML parameters $\theta^{*}$

$$
\begin{aligned}
\theta^{*} & =\operatorname{argmax}_{\theta} \mathrm{P}(\text { data | logic program, } \theta) \\
& =\operatorname{argmax}_{\theta} \log \mathrm{P}(\text { data } \mid \text { logic program, } \theta)
\end{aligned}
$$

- Reduces to problem to estimate parameters of a Bayesian networks:
given structure,
partially observed random variables


## Parameter Estimation - BLPs



## Parameter Estimation - BLPs




