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Overview

 Expressive power of PCFGs, HMMs, BNs still limited
• First order logic is more expressive

 Why not combine logic with probabilities ?
• Probabilistic logic learning

 Short recap of logic (programs)
 Stochastic logic programs

• Extend PCFGs

 Bayesian logic programs
• Extend Bayesian Nets

 Logical HMMs
• Extend HMMs



Context
One of the key open questions of artificial intelligence
concerns

"probabilistic logic learning",

i.e. the integration of
probabilistic reasoning
with

machine learning.

first order logic
representations and

Sometimes called Statistical Relational Learning



So far

 We have largely been looking at probabilistic
representations and ways of learning these
from data
• BNs, HMMs, PCFGs

 Now, we are going to look at their expressive
power, and make traditional probabilistic
representations more expressive using logic
• Probabilistic First Order Logics
• Lift BNs, HMMs, PCFGs to more expressive

frameworks
• Upgrade also the underlying algorithms



London Underground example
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London Underground in Prolog (1)
    connected(bond_street,oxford_circus,central).

connected(oxford_circus,tottenham_court_road,central).
connected(bond_street,green_park,jubilee).
connected(green_park,charing_cross,jubilee).
connected(green_park,piccadilly_circus,piccadilly).
connected(piccadilly_circus,leicester_square,piccadilly).
connected(green_park,oxford_circus,victoria).
connected(oxford_circus,piccadilly_circus,bakerloo).
connected(piccadilly_circus,charing_cross,bakerloo).
connected(tottenham_court_road,leicester_square,northern).
connected(leicester_square,charing_cross,northern).

Symmetric facts now shown !!!
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London Underground in Prolog (2)
Two stations are nearby if they are on the same line with at
most one other station in between (symmetric facts not shown)

nearby(bond_street,oxford_circus).
nearby(oxford_circus,tottenham_court_road).
nearby(bond_street,tottenham_court_road).
nearby(bond_street,green_park).
nearby(green_park,charing_cross).
nearby(bond_street,charing_cross).
nearby(green_park,piccadilly_circus).

or better
nearby(X,Y):-connected(X,Y,L).
nearby(X,Y):-connected(X,Z,L),connected(Z,Y,L).

Facts: unconditional truths
Rules/Clauses: conditional truths
Both definitions are equivalent.



likes(peter,S):-student_of(S,peter).likes(peter,S):-student_of(S,peter).

“Peter likes anybody who is his student.” 

clauseclause

atomsatoms

constantconstant variablevariable

termsterms

p.25

Clauses are universally quantified !!!
:- denotes implication 
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Recursion (2)

A station is reachable from another if they are on the
same line, or with one, two, … changes:

reachable(X,Y):-connected(X,Y,L).
reachable(X,Y):-connected(X,Z,L1),connected(Z,Y,L2).
reachable(X,Y):-connected(X,Z1,L1),connected(Z1,Z2,L2),
                connected(Z2,Y,L3).
…

or better
reachable(X,Y):-connected(X,Y,L).
reachable(X,Y):-connected(X,Z,L),reachable(Z,Y).



Substitutions

 A substitution maps variables to terms:
• {S->maria}

 A substitution can be applied to a clause:
• likes(peter,maria):-student_of(maria,peter).

 The resulting clause is said to be an instance
of the original clause, and a ground instance
if it does not contain variables.

 Each instance of a clause is among its logical
consequences.

p.26



route

tottenham_court_road

leicester_square

route

noroute
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Structured terms (2)

reachable(X,Y,noroute):-connected(X,Y,L).
reachable(X,Y,route(Z,R)):-connected(X,Z,L),
                           reachable(Z,Y,R).

?-reachable(oxford_circus,charing_cross,R).
R = route(tottenham_court_road,route(leicester_square,noroute));
R = route(piccadilly_circus,noroute);
R = route(picadilly_circus,route(leicester_square,noroute))

functorfunctor



.

tottenham_court_road

leicester_square

.

[]
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Lists (3)
reachable(X,Y,[]):-connected(X,Y,L).
reachable(X,Y,[Z|R]):-connected(X,Z,L),
                      reachable(Z,Y,R).

?-reachable(oxford_circus,charing_cross,R).
R = [tottenham_court_road,leicester_square];
R = [piccadilly_circus];
R = [picadilly_circus,leicester_square]

list functorlist functor



Answering queries (1)

Query:
which station is nearby Tottenham Court Road?

?- nearby(tottenham_court_road, W).

Prefix ?- means it‘s a query and not a fact.

Answer to query is:
  {W -> leicester_square}
a so-called substitution.

When nearby defined by facts, substitution found by
unification.



clauseclause

factfact

empty queryempty query

answer substitutionanswer substitution

substitutionsubstitution

queryquery

?-nearby(tottenham_court_road,W)

nearby(X1,Y1):-connected(X1,Y1,L1) 

Fig.1.2, p.7

Proof tree

connected(tottenham_court_road,
leicester_square,northern)

[]

{W->leicester_square, L1->northern}

?-connected(tottenham_court_road,W,L1)

{X1->tottenham_court_road, Y1->W}



Recall from AI course

 Unification to unify two different terms

 Resolution inference rule

 Refutation proofs, which derive the
empty clause

 SLD-tree, which summarizes all
possible proofs (left to right) for a goal



:-teaches(peter,ai_techniques)

:-teaches(peter,expert_systems)

:-teaches(peter,computer_science)

?-student_of(S,peter)

SLD-tree: one path for each proof-tree

:-follows(S,C),teaches(peter,C):-follows(S,C),teaches(peter,C)

:-teaches(peter,expert_systems)

:-teaches(peter,computer_science) :-teaches(peter,ai_techniques)

?-student_of(S,peter)

student_of(X,T):-follows(X,C),teaches(T,C).
follows(paul,computer_science).
follows(paul,expert_systems).
follows(maria,ai_techniques).
teaches(adrian,expert_systems).
teaches(peter,ai_techniques).
teaches(peter,computer_science).

p.44-5

[][]



The least Herbrand model

 Definition:
• The set of all ground facts that are logically

entailed by the program

 All ground facts not in the LHM are false …
 LHM be computed as follows:

• M0 = {}; M1 = { true }; i:=0
• while Mi =\= Mi+1 do

 i := i +1;
 Mi := { h θ | h:- b1, …, bn is clause and there is a substitution θ such

that all bi θ  ∈ Mi-1 }

• Mi contains all true facts, all others are false



Example LHM

KB:   p(a,b).   a(X,Y) :- p(X,Y).
        p(b,c).           a(X,Y) :- p(X,Z), a(Z,Y).
M0 = emtpy;
M1 = { true }
M2 = { true, p(a,b), p(b,c) }
M3 = M2 U {a(a,b), a(b,c) }
M4 = M3 U { a(a,c) }
M5 = M4
 ...



Stochastic Logic Programs

 Recall :
• Prob. Regular Grammars
• Prob. Context-Free Grammars

 What about Prob. Turing Machines ? Or
Prob. Grammars ?
• Stochastic logic programs combine

probabilistic reasoning in the style of
PCFGs with the expressive power of a
programming language.



Recall PCFGs



We defined



Stochastic Logic Programs

 Correspondence between CFG - SLP
• Symbols   -   Predicates
• Rules   -   Clauses
• Derivations - SLD-derivations/Proofs

 So,
• a stochastic logic program is an annotated logic

program.
• Each clause has an associated probability label.

The sum of the probability labels for clauses
defining a particular predicate is equal to 1.



An Example

:-card(a,s)

:-rank(a), suit(s)

:-suit(s)

[]

Prob derivation
= 1 . 0.125 . 0.25



Example

s([the,turtle,sleeps],[]) ?



SLPs : Key Ideas



Example

 Cards :
• card(R,S) - no proof with R in {a,7,8,9…}

and S in { d,h,s,c} fails

• For each card, there is a unique refutation

• So,



Consider

 same_suit(S,S) :-
suit(S), suit(S).

 In total 16 possible derivations, only 4
will succeed, so



Another example (due to Cussens)



Questions we can ask (and answer)
about SLPs



Answers

 The algorithmic answers to these questions,
again extend those of PCFGs and HMMs, in
particular,
• Tabling is used (to record probabilities of partial

proofs and intermediate atoms)
• Failure Adjusted EM (FAM) is used to solve

parameter re-estimation problem
 Additional hidden variables range over

• Possible refutations and derivations for observed atoms
• Topic of recent research
• Freiburg : learning from refutations (instead of atoms),

combined with structure learning



Sampling

 PRGs, PCFGs, and SLPs can also be used
for sampling sentences, ground atoms that
follow from the program

 Rather straightforward. Consider SLPs:
• Probabilistically explore SLD-tree
• At each step, select possible resolvents using the

probability labels attached to clauses
• If derivation succeeds, return corresponding

(ground) atom
• If derivation fails, then restart.



Bayesian Networks 
[Pearl 91]

Qualitative part:

Directed acyclic graph

 Nodes - random vars.

 Edges - direct influence

Compact representation of joint probability distributions

Quantitative part:
Set of conditional probability
distributions
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Together:
Define a unique distribution
in a compact, factored form

P(E,B,A,M,J)=P(E) * P(B) * P(A|E,B) * P(M|A) * P(J|A)



Traditional Approaches

P(j) =     P(j|a) * P(m|a) * P(a|e,b) * P(e) * P(b)

+ P(j|a) * P(m|a) * P(a|e,b) * P(e) * P(b)
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...

+ P(j|a) * P(m|a) * P(a|e,b) * P(e) * P(b)

burglary.

earthquake.

alarm :- burglary, earthquake.

marycalls :- alarm.

johncalls :- alarm.

Bayesian Networks 
[Pearl 91]



Expressiveness Bayesian Nets

 A Bayesian net defines a probability
distribution over a propositional logic

 Essentially, the possible states (worlds) are
propositional interpretations

 But propositional logic is severely limited in
expressive power,  therefore consider
combining BNs with logic programs
• Bayesian logic programs
• Actually, a BLP + some background knowledge

generates a BN
• So, BLP is a kind of BN template !!!



0.9 0.1
e

b

e
0.2 0.8

0.01 0.99
0.9 0.1

be

b

b

e

BE P(A | B,E)
Earthquake

JohnCalls

Alarm

MaryCalls

Burglary

Bayesian Logic Programs (BLPs)

alarm/0

earthquake/0 burglary/0

maryCalls/0 johnCalls/0

alarm

earthquake burglary

0.9 0.1
e

b

e
0.2 0.8

0.01 0.99
0.9 0.1

be

b

b

e

BE P(A | B,E)

local BN fragment

Rule Graph

alarm :- earthquake, burglary.

[Kersting, De Raedt]



bt

pc mc

Person

ba(0.0,0.0,1.0,0.0)

.........

aa(1.0,0.0,0.0,0.0)

mc(Person)pc(Person)bt(Person)

Bayesian Logic Programs (BLPs)

bt/1

pc/1 mc/1

argument

predicate

atom
bt(Person) :- pc(Person),mc(Person).

variable

Rule Graph

mc

pc mc

Person

mother

ba(0.5,0.5,0.0)

.........

aa(1.0,0.0,0.0)

mc(Mother)pc(Mother)mc(Person)

Mother

[Kersting, De Raedt]



Bayesian Logic Programs (BLPs)

bt/1

pc/1 mc/1

pc(Person) | father(Father,Person), pc(Father),mc(Father).

mc(Person) | mother(Mother,Person), pc(Mother),mc(Mother).

bt(Person) | pc(Person),mc(Person).

mc

pc mc

Person

mother

ba(0.5,0.5,0.0)

.........

aa(1.0,0.0,0.0)

mc(Mother)pc(Mother)mc(Person)

Mother

[Kersting, De Raedt]



Bayesian Logic Programs (BLPs)

father(rex,fred).      mother(ann,fred).
father(brian,doro).    mother(utta, doro).
father(fred,henry).    mother(doro,henry).

mc(rex)

bt(rex)

pc(rex)mc(ann) pc(ann)

bt(ann)

mc(fred) pc(fred)

bt(fred)

mc(brian)

bt(brian)

pc(brian)mc(utta) pc(utta)

bt(utta)

mc(doro) pc(doro)

bt(doro)

mc(henry)pc(henry)

bt(henry)

pc(Person) | father(Father,Person), pc(Father),mc(Father).

mc(Person) | mother(Mother,Person), pc(Mother),mc(Mother).

bt(Person) | pc(Person),mc(Person).

Bayesian Network induced over least Herbrand model



Bayesian logic programs

 Computing the ground BN (the BN that
defines the semantics)
• Compute the least Herbrand Model of the BLP
• For each clause H | B1, … BN with CPD

 if there is a substitution θ such that {H θ, B1 θ, …,BN θ}
subset LHM, then H θ’s parents include B1 θ, …,BN θ,
and with CPD specified by the clause

• Delete logical atoms from BN (as their truth-value
is known) - e.g. mother, father in the example

• Possibly apply aggregation and combining rules

♣ For specific queries, only part of the resulting
BN is necessary, the support net, cf. Next
slides



Procedural Semantics

mc(rex)

bt(rex)

pc(rex)mc(ann) pc(ann)

bt(ann)

mc(fred) pc(fred)

bt(fred)

mc(brian)

bt(brian)

pc(brian)mc(utta) pc(utta)

bt(utta)

mc(doro) pc(doro)

bt(doro)

mc(henry)pc(henry)

bt(henry)

P(bt(ann)) ?



Procedural Semantics

mc(rex)

bt(rex)

pc(rex)mc(ann) pc(ann)

bt(ann)

mc(fred) pc(fred)

bt(fred)

mc(brian)

bt(brian)

pc(brian)mc(utta) pc(utta)

bt(utta)

mc(doro) pc(doro)

bt(doro)

mc(henry)pc(henry)

bt(henry)

P(bt(ann), bt(fred)) ?

P(bt(ann)| bt(fred)) =

P(bt(ann),bt(fred)) 

P(bt(fred)) 

Bayes‘ rule



Combining Rules

P(A|B,C)

P(A|B) and P(A|C)

CR

 Any algorithm which

 has an empty output if and only if the input is empty

 combines a set of CPDs into a single (combined) CPD

 E.g. noisy-or

prepared(Student,Topic) | read(Student,Book),

                             discusses(Book,Topic).

prepared

Student
read

discussesBook

Topic



Combining Partial Knowledge

prepared(s1,bn)

discusses(b1,bn)

prepared(s2,bn)

discusses(b2,bn)

 variable # of parents for prepared/2
due to read/2
• whether a student prepared a topic depends

on the books she read

 CPD only for one book-topic pair

prepared(Student,Topic) | read(Student,Book),

                             discusses(Book,Topic).

prepared

Student
read

discussesBook

Topic



Summary BLPs

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

pc(Person) | father(Father,Person), pc(Father),mc(Father).
mc(Person) | mother(Mother,Person), pc(Mother),mc(Mother).

bt(Person) | pc(Person),mc(Person).

Underlying logic pogram

+ (macro) CPDs

=
Joint probability distribution over the least 

Herbrand interpretation

+ CRs

+ Consequence operator

ba(0.5,0.5,0.0)
.........

aa(1.0,0.0,0.0)
mc(Mother)pc(Mother)mc(Person)

noisy-or, ...

If the body holds then 
the head holds, too.

mc(rex)

bt(rex)

pc(rex)mc(ann) pc(ann)

bt(ann)

mc(fred) pc(fred)

bt(fred)

mc(brian)

bt(brian)

pc(brian)mc(utta) pc(utta)

bt(utta)

mc(doro) pc(doro)

bt(doro)

mc(henry)pc(henry)

bt(henry)

mc(rex)

bt(rex)

pc(rex)mc(ann) pc(ann)

bt(ann)

mc(fred) pc(fred)

bt(fred)

mc(brian)

bt(brian)

pc(brian)mc(utta) pc(utta)

bt(utta)

mc(doro) pc(doro)

bt(doro)

mc(henry)pc(henry)

bt(henry)

=
Conditional independencies 

encoded in the induced BN

structure

Local 

probability

models



Bayesian Logic Programs
- Examples

% apriori nodes
nat(0).

% aposteriori nodes
nat(s(X)) | nat(X).

nat(0) nat(s(0)) nat(s(s(0)) ...MC

% apriori nodes
state(0).

% aposteriori nodes
state(s(Time)) | state(Time).
output(Time)   | state(Time)

state(0)

output(0)

state(s(0))

output(s(0))

...HMM

% apriori nodes
n1(0).

% aposteriori nodes
n1(s(TimeSlice) | n2(TimeSlice).
n2(TimeSlice)   | n1(TimeSlice).
n3(TimeSlice)   | n1(TimeSlice), n2(TimeSlice).

n1(0)

n2(0)

n3(0)

n1(s(0))

n2(s(0))

n3(s(0))

...
DBN

Ε

pure
 P

ro
log



Bayesian Logic Programs (BLPs)
 Unique probability distribution over Herbrand

interpretations
• Finite branching factor, finite proofs, no self-

dependency

 Highlight
• Separation of qualitative and quantitative parts
• Functors

 Graphical Representation
 Discrete and continuous RV
 BNs, DBNs, HMMs, SCFGs, Prolog ...
 Turing-complete programming language
 Learning

[Kersting, De Raedt]



Ε

Learning BLPs from Interpretations

Model(1)

earthquake=yes,

burglary=no,

alarm=?,

marycalls=yes,

johncalls=no

Model(1)

earthquake=yes,

burglary=no,

alarm=?,

marycalls=yes,

johncalls=no

Earthquake

JohnCalls

Alarm

MaryCalls

Burglary

Model(2)

earthquake=no,

burglary=no,

alarm=no,

marycalls=no,

johncalls=no

Model(2)

earthquake=no,

burglary=no,

alarm=no,

marycalls=no,

johncalls=no

Model(3)

earthquake=?,

burglary=?,

alarm=yes,

marycalls=yes,

johncalls=yes

Model(3)

earthquake=?,

burglary=?,

alarm=yes,

marycalls=yes,

johncalls=yes



Data case: 
• Random Variable + States = (partial) Herbrand interpretation

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(2)

bt(cecily)=ab,

pc(henry)=a,

mc(fred)=?,

bt(kim)=a,

pc(bob)=b

Model(2)

bt(cecily)=ab,

pc(henry)=a,

mc(fred)=?,

bt(kim)=a,

pc(bob)=b

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Bloodtype example

Learning BLPs from Interpretations



Parameter Estimation - BLPs
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Underlying

Logic program

L

Learning

Algorithm

Parameter Θ



Parameter Estimation – BLPs
 Estimate the CPD θ entries that best fit the data

 „Best fit“: ML parameters θ∗

           θ∗ = argmaxθ P( data | logic program, θ)
             = argmaxθ log P( data | logic program, θ)

 Reduces to problem to estimate parameters of a Bayesian
networks:

          given structure,

          partially observed random variables



Parameter Estimation – BLPs
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Parameter Estimation – BLPs
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Parameter tying



EM – BLPs

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

Initial Parameters θ0

Logic Program L

Expected counts of a clause

Expectation 

Inference 

Update parameters 
        (ML, MAP)

Maximization 

EM-algorithm:
iterate until convergence

Current Model
(Μ,θk)

P( head(GI), body(GI) | DC )MM

DataCase

DC

Ground Instance
GI

P( head(GI), body(GI) | DC )MM

DataCase
DC

Ground Instance
GI

P( body(GI) | DC )MM

DataCase
DC

Ground Instance
GI


