Motivation

- The system Libratus played a Poker tournament (heads up no-limit Texas hold 'em) from January 11 to 31, 2017 against four world-class Poker players.
 - Heads up: One-on-One, i.e., a zero-sum game.
 - No-limit: There is no limit in betting, only the stack the user has.
 - Texas hold'em: Each player gets two private cards, then open cards are dealt: first three, then one, and finally another one.
 - One combines the best 5 cards.
 - Betting before the open cards are dealt and in the end: check, call, raise, or fold.
- Two teams (reversing the dealt cards).
- Libratus won the tournament with more than 1.7 Million US-$ (which neither the system nor the programming team got).

The humans behind the scene

Professional player Jason Les and Prof. Tuomas Sandholm (CMU)
Motivation

Kuhn Poker

Real Poker: Problems and techniques

Counterfactual regret minimization

2 Kuhn Poker

- Minimal form of heads-up Poker, with only three cards: Jack, Queen, King.
- Each player is dealt one card and antes 1 chip (forced bet in the beginning).
- Player 1 can check (declines to make a bet), or bet 1 chip.
- After player 1 has checked, player 2 can check or bet. If player 2 bets, player 1 can fold or call (also betting one chip)
- After Player 1 has bet, player 2 can fold or call.

Kuhn Poker: Game tree

Kuhn has shown:
- There exist a family of Nash equilibria behavioral strategies for player 1 and one behavioral NE strategy for player 2.
- In this Nash equilibrium, the expected payoff for player 1 is $-1/18$.
- That shows the systematic disadvantage, the first player has!
State space size

- **Reminder:** In chess, there are 10^{47} distinct states, in Backgammon there are 10^{20}.
- Heads-up limit Texas hold’em has 10^{17} distinct states and 10^{14} information sets.
- No-limit: Depends on stack. With 20k$: 10^{161} information sets.

General techniques

- **Abstraction:** Action abstraction (bet size) and card abstractions (classifying similar hands into buckets) → only 10^{12} information sets.
- **Equilibrium computation:** Using counterfactual regret minimization as a self-play technique.
- **Sub-game solving:** In later betting rounds, one solves the game with a finer abstraction (and the information gained from the game so far).
- **Self-Improvement:** During the night, new parts of the game tree are explored, when abstraction is too coarse there.
- 25 Million core hours to compute strategies.
Regret matching in strategic games

Play a strategic game for a number of rounds:
- **Regret** is determined after each game round: If I had played another move, my payoff would have been *that* much higher!
- **Accumulate** all positive regrets over time.
- **Match** the probabilities of a mixed strategy with the accumulated regret.

Take the *average* over all mixed strategies.

If two players use the regret matching technique in a zero-sum game, then the average over the mixed strategies converges to Nash equilibrium strategies.

Regret matching: RPS example with two rounds I

Assume we play rock, paper, scissors, and player 1 uses regret matching.

1. Initial **cumulative regret** is $(0, 0, 0)$.
2. If there is no positive accumulated regret, play uniform strategy $(1/3, 1/3, 1/3)$.
3. Player 1 chooses R, player 2 P.
4. **Regret** for player 1:
 - R: $u_1(R, P) - u_1(R, P) = -1 - 1 = 0$
 - P: $u_1(P, P) - u_1(R, P) = 0 - 1 = -1$
 - S: $u_1(S, P) - u_1(R, P) = 1 - 1 = 0$
5. Player 1’s **cumulative regret** is now $(0, 1, 2)$.
6. Regret matching suggests this strategy: $\alpha_1^1 = (0, 1/3, 2/3)$.
7. Player 1 chooses P, while player 2 chooses S.

Regret matching: RPS example with two rounds II

1. **Regret** for player 1:
 - R: $u_1(R, S) - u_1(P, S) = 1 - 1 = +2$
 - P: $u_1(P, S) - u_1(P, S) = -1 - 1 = 0$
 - S: $u_1(S, S) - u_1(P, S) = 0 - 1 = -1$
2. **Cumulative regret** is now $(2, 1, 3)$.
3. **Regret matching**: $\alpha_1^2 = (1/3, 1/6, 1/2)$
4. The **average strategy** is $(1/6, 3/12, 7/12)$. Well, not close to the NE strategy, but will converge!

Counterfactual regret minimization

- Regret matching in strategic games does not buy us anything. We know how to compute NEs for zero-sum games already.
- In extensive-form games, we can use it to modify our behavioral strategies at each information set.
- We have to “pass down” the probability that an information set is reached and have to “pass up” the utility of a terminal history.
- As in the strategic game case, the average strategy converges to a Nash equilibrium (in behavioral strategies).
- Is it good enough?
- Since a lot of histories are explored, also “off-NE strategies” will be visited and reasonable choice will occur.
Notation & Definitions I

- During training, \(t \) and \(T \) denote time steps.
- Let \(\pi^\beta(h) \) be the probability that history \(h \) will be reached (depends on behavioral strategy profile \(\beta \) and chance moves).
- \(\pi^\beta(I_i) = \sum_{h \in I_i} \pi^\beta(h) \) is then the probability that information set \(I_i \) will be reached.
- The counterfactual reach probability of \(I_i \), written \(\pi^{\beta - i}(I_i) \), is the probability of reaching \(I_i \) under the assumption that player \(i \) always uses actions with probability 1 in order to reach \(I_i \).
- If \(\beta \) is a behavioral strategy profile, then \(\beta_{I_i} \rightarrow a \) is the same profile, except that at information set \(I_i \), player \(i \) always plays \(a \).

Notation & Definitions II

- If \(z \in Z \) is a terminal history, then we write \(h \sqsubseteq z \), if \(h \) is a proper prefix of \(z \).
- For \(h \sqsubseteq z \), the notation \(\pi^\beta(h, z) \) is the probability that we reach \(z \) from \(h \).
- The counterfactual utility of \(\beta \) at non-terminal history \(h \) is:
 \[v_i(\beta, h) = \sum_{z \in Z, h \sqsubseteq z} \pi^{\beta - i}(h) \pi^\beta(h, z) u_i(z). \]
- The counterfactual regret of not taking action \(a \) at history \(h \) is:
 \[r(h, a) = v_i(\beta_{I_i} \rightarrow a, h) - v_i(\beta, h). \]

Notation & Definitions III

- Counterfactual regret of not taking \(a \) at \(I_i \):
 \[r(l_i, a) = \sum_{h \in l_i} r(h, a). \]
- \(r^T_l(l_i, a) \) refers to the regret in episode \(t \), when players use \(\beta^i \) and \(i \) does not choose \(a \) in \(l_i \).
- Cumulative counterfactual regret is then defined as:
 \[R^T_l(l_i, a) = \sum_{t=1}^{T} r^T_l(l_i, a). \]
- Let us define the positive cumulative counterfactual regret as:
 \[R^{T, +}_l(l_i, a) = \max(R^T_l(l_i, a), 0). \]

Notation & Definitions IV

- Now, the regret matching strategy for episode \(T + 1 \) is called \(\beta^{T+1} \) and computed as:
 \[\beta^{T+1}(l_i, a) = \begin{cases} \frac{R^{T, +}_l(l_i, a)}{\sum_{a \in A(l_i)} R^{T, +}_l(l_i, a)} & \text{if } \sum_{a \in A(l_i)} R^{T, +}_l(l_i, a) > 0 \\ 1/A(l_i) & \text{otherwise.} \end{cases} \]
CFR in action

- One use usually what is called chance sampling, i.e., one uses one or more shuffles of the cards to compute the values for one episode.
- That also means that only a small part of the game tree needs to be in main memory.
- After a fixed number of episodes one stops and then has an (approximate) NE.
- Although, we would have liked a sequential equilibrium, we most probably will also collect regret values for information set, which are not on equilibrium profile histories.
- There are many variations and refinements of CFR.
- Looks like reinforcement learning, but it is not.