Motivation

We already know some algorithms for finding Nash equilibria in restricted settings from the previous chapter, and upper bounds on their complexity.

- For finite zero-sum games: polynomial-time computation.
- For general finite two player games: computation in \mathbf{NP}.

Question: What about lower bounds for those cases and in general?

Approach to an answer: In this chapter, we study the computational complexity of finding Nash equilibria.
Finding Nash Equilibria as a Search Problem

In this form, Nash looks similar to other search problems, e.g.:

SAT
Given: A propositional formula \(\varphi \) in CNF.
Find: A truth assignment that makes \(\varphi \) true, if one exists, else ‘fail’.

Note: This is the search version of the usual decision problem.

Search Problems

A search problem is given by a binary relation \(R(x, y) \).

Definition (Search problem)
A search problem is a problem that can be stated in the following form, for a given binary relation \(R(x, y) \) over strings:

\text{Search-R}
Given: \(x \).
Find: Some \(y \) such that \(R(x, y) \) holds, if such a \(y \) exists, else ‘fail’.

Complexity Classes for Search Problems

Some complexity classes for search problems:
- \(\text{FP} \): class of search problems that can be solved by a deterministic Turing machine in polynomial time.
- \(\text{FNP} \): class of search problems that can be solved by a nondeterministic Turing machine in polynomial time.
- \(\text{TFNP} \): class of search problems in \(\text{FNP} \) where the relation \(R \) is total, i.e., \(\forall x \exists y. R(x, y) \).
- \(\text{PPAD} \): class of search problems that can be polynomially reduced to End-of-Line.

(PPAD: Polynomial Parity Argument in Directed Graphs)

To understand PPAD, we need to understand what the End-of-Line problem is.
The End-of-Line Problem

Definition (End-of-Line instance)
Consider a directed graph \mathcal{G} with node set $\{0,1\}^n$ such that each node has in-degree and out-degree at most one and there are no isolated vertices. The graph \mathcal{G} is specified by two polynomial-time computable functions π and σ:

- $\pi(v)$: returns the predecessor of v, or \perp if v has no predecessor.
- $\sigma(v)$: returns the successor of v, or \perp if v has no successor.

In \mathcal{G}, there is an arc from v to v' if and only if $\sigma(v) = v'$ and $\pi(v') = v$.

Example (End-of-Line)
Given source $v \neq v'$, sink $v \neq v'$.

Comparison of Search Complexity Classes
Relationship of different search complexity classes:

$$FP \subseteq PPAD \subseteq TFNP \subseteq FNP$$

Compare to upper runtime bound that we already know:
Lemke-Howson algorithm has exponential time complexity in the worst case.
Motivation

Search

Problems

Complexity

Results

Summary

3 Complexity Results

PPAD-Completeness of Nash

Theorem (Daskalakis et al., 2006)

NASH is PPAD-complete.

The same holds for k-player instead of just two-player NASH.

Thus, NASH is presumably “simpler” than the SAT search problem, but presumably “harder” than any polynomial search problem.

FNP-Completeness of 2nd-Nash

Another search problem related to Nash equilibria is the problem of finding a second Nash equilibrium (given a first one has already been found). As it turns out, this is at least as hard as finding a first Nash equilibrium.

Definition (2nd-Nash problem)

Given: A finite two-player game G and a mixed-strategy Nash equilibrium of G.

Find: A second different mixed-strategy Nash equilibrium of G, if one exists, else “fail”.

Theorem (Conitzer and Sandholm, 2003)

2nd-Nash is FNP-complete.

Some Further Hardness Results

Theorem (Conitzer and Sandholm, 2003)

For each of the following properties P_ℓ, $\ell = 1, 2, 3, 4$, given a finite two-player game G, it is NP-hard to decide whether there exists a mixed-strategy Nash equilibrium (α, β) in G that has property P_ℓ.

P_1: player 1 (or 2) receives a payoff $\geq k$ for some given k. (“Guaranteed payoff problem”)

P_2: $U_1(\alpha, \beta) + U_2(\alpha, \beta) \geq k$ for some given k. (“Guaranteed social welfare problem”)

P_3: player 1 (or 2) plays some given action a with prob. > 0.

P_4: (α, β) is Pareto-optimal, i.e., there is no strategy profile (α', β') such that

- $U_i(\alpha', \beta') \geq U_i(\alpha, \beta)$ for both $i \in \{1, 2\}$, and
- $U_i(\alpha', \beta') > U_i(\alpha, \beta)$ for at least one $i \in \{1, 2\}$.
Summary

- **PPAD** is the complexity class for which the **End-of-Line problem** is complete.
- Finding a mixed-strategy Nash equilibrium in a finite two-player strategic game is **PPAD**-complete.
- **FNP** is the search-problem equivalent of the class **NP**.
- Finding a second mixed-strategy Nash equilibrium in a finite two-player strategic game is **FNP**-complete.
- Several decision problems related to Nash equilibria are **NP**-complete:
 - guaranteed payoff
 - guaranteed social welfare
 - inclusion in support
 - **Pareto-optimality** of Nash equilibria