1 Motivation
Motivation: We already know some algorithms for finding Nash equilibria in restricted settings from the previous chapter, and upper bounds on their complexity.

- For finite zero-sum games: polynomial-time computation.
- For general finite two player games: computation in \(\text{NP} \).

Question: What about lower bounds for those cases and in general?

Approach to an answer: In this chapter, we study the computational complexity of finding Nash equilibria.
Finding Nash Equilibria as a Search Problem

Definition (The problem of computing a Nash equilibrium)

NASH

Given: A finite two-player strategic game G.

Find: A mixed-strategy Nash equilibrium (α, β) of G.

Remarks:

- No need to add restriction “...if one exists, else ‘fail’”, because existence is guaranteed by Nash’s theorem.
- The corresponding **decision** problem can be trivially solved in **constant time** (always return “true”). Hence, we really need to consider the **search** problem version instead.
In this form, Nash looks similar to other search problems, e.g.:

SAT

Given: A propositional formula φ in CNF.

Find: A truth assignment that makes φ true, if one exists, else ‘fail’.

Note: This is the search version of the usual decision problem.
2 Search Problems
A search problem is given by a binary relation $R(x,y)$.

Definition (Search problem)

A search problem is a problem that can be stated in the following form, for a given binary relation $R(x,y)$ over strings:

SEARCH-R

Given: x.

Find: Some y such that $R(x,y)$ holds, if such a y exists, else ‘fail’.
Some complexity classes for search problems:

- **FP**: class of search problems that can be solved by a deterministic Turing machine in polynomial time.
- **FNP**: class of search problems that can be solved by a nondeterministic Turing machine in polynomial time.
- **TFNP**: class of search problems in FNP where the relation R is total, i.e., $\forall x \exists y. R(x, y)$.
- **PPAD**: class of search problems that can be polynomially reduced to End-of-Line.

(PPAD: Polynomial Parity Argument in Directed Graphs)

To understand PPAD, we need to understand what the End-of-Line problem is.
The End-of-Line Problem

Definition (End-of-Line instance)
Consider a directed graph G with node set $\{0, 1\}^n$ such that each node has in-degree and out-degree at most one and there are no isolated vertices. The graph G is specified by two polynomial-time computable functions π and σ:

- $\pi(v)$: returns the predecessor of v, or \bot if v has no predecessor.
- $\sigma(v)$: returns the successor of v, or \bot if v has no successor.

In G, there is an arc from v to v' if and only if $\sigma(v) = v'$ and $\pi(v') = v$.
The End-of-Line Problem

Definition (End-of-Line instance (ctd.))

We call a triple \((\pi, \sigma, v)\) consisting of such functions \(\pi\) and \(\sigma\) and a node \(v\) in \(G\) with in-degree zero (a "source") an End-of-Line instance.

With this, we can define the End-of-Line problem:

Definition (End-of-Line problem)

End-of-Line

Given: An End-of-Line instance \((\pi, \sigma, v)\).

Find: Some node \(v' \neq v\) such that \(v'\) has out-degree zero (a "sink") or in-degree zero (another "source").
The End-of-Line Problem

Example (End-of-Line)

- Given source
- Sink $\neq v$
- Source $\neq v$
- Sink $\neq v$
Relationship of different search complexity classes:

\[FP \subseteq PPAD \subseteq TFNP \subseteq FNP \]

Compare to upper runtime bound that we already know:
Lemke-Howson algorithm has exponential time complexity in the worst case.
3 Complexity Results
Theorem (Daskalakis et al., 2006)

$$\text{Nash}$$ is $$\text{PPAD}$$-complete.

The same holds for $$k$$-player instead of just two-player $$\text{Nash}$$.

Thus, $$\text{Nash}$$ is presumably “simpler” than the $$\text{Sat}$$ search problem, but presumably “harder” than any polynomial search problem.
Another search problem related to Nash equilibria is the problem of finding a second Nash equilibrium (given a first one has already been found). As it turns out, this is at least as hard as finding a first Nash equilibrium.

Definition (2ND-Nash problem)

2ND-Nash

Given: A finite two-player game G and a mixed-strategy Nash equilibrium of G.

Find: A second different mixed-strategy Nash equilibrium of G, if one exists, else ‘fail’.

Theorem (Conitzer and Sandholm, 2003)

2ND-Nash is **FNP-complete**.
Some Further Hardness Results

Theorem (Conitzer and Sandholm, 2003)

For each of the following properties P^ℓ, $\ell = 1, 2, 3, 4$, given a finite two-player game G, it is \textbf{NP}-hard to decide whether there exists a mixed-strategy Nash equilibrium (α, β) in G that has property P^ℓ.

P^1: player 1 (or 2) receives a payoff $\geq k$ for some given k.
(“Guaranteed payoff problem”)

P^2: $U_1(\alpha, \beta) + U_2(\alpha, \beta) \geq k$ for some given k.
(“Guaranteed social welfare problem”)

P^3: player 1 (or 2) plays some given action a with prob. > 0.

P^4: (α, β) is Pareto-optimal, i.e., there is no strategy profile (α', β') such that
- $U_i(\alpha', \beta') \geq U_i(\alpha, \beta)$ for both $i \in \{1, 2\}$, and
- $U_i(\alpha', \beta') > U_i(\alpha, \beta)$ for at least one $i \in \{1, 2\}$.

May 9th, 2018
4 Summary
Summary

- **PPAD** is the complexity class for which the *End-of-Line* problem is complete.

- Finding a mixed-strategy Nash equilibrium in a finite two-player strategic game is **PPAD-complete**.

- **FNP** is the search-problem equivalent of the class **NP**.

- Finding a second mixed-strategy Nash equilibrium in a finite two-player strategic game is **FNP-complete**.

- Several decision problems related to Nash equilibria are **NP-complete**:
 - guaranteed payoff
 - guaranteed social welfare
 - inclusion in support
 - Pareto-optimality of Nash equilibria