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Question 1 (6+6+6 points) Strategic Games

(a) Consider the following strategic game:

Player 1

Player 2
X Y Z U

A 1, 1 4, 0 2, 6 3, 4
B 5, 6 1, 3 0, 3 5, 2
C 6, 2 5, 1 1, 1 4, 0
D 0, 4 8, 3 1, 5 2, 6

Apply the method of iterative elimination of strictly dominated strategies. Highlight all
pure-strategy Nash equilibria in the game matrix.

(b) Consider the following strategic game:

Player 1

Player 2
X Y

A x, 4 0, 0
B 0, 0 2, 2

Let α be a mixed-strategy Nash equilibrium with 0 < α1(A) < 1 and 0 < α2(X) < 1 and
let x ∈ R+. How do α1(A) and α2(X) change as x is decreased? Justify your answer.

(c) Consider the following strategic game:

Player 1

Player 2
X Y Z

A 1, 1 2, 1 0, 2
B 1, 1 0, 1 2, 2
C 2, 2 1, 0 1, 1

Determine all Nash equilibria (pure or mixed). Explain how you arrived at your solution.

(Hint: You do not need to consider all pairs of support-sets for the computation of the
mixed-strategy Nash equilibria. It may be useful to simplify the game first.)



(additional room for answer to Question 1)
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Question 2 (8+2 points) Correlated Equilibria

(a) Consider the traffic game defined by the following payoff matrix:

Player 1

Player 2
Go Wait

Go −10,−10 1, 0
Wait 0, 1 −1,−1

The Nash equilibrium payoff profiles are (0, 1) and (1, 0) (pure) and (−5
6 ,−

5
6) (mixed).

Construct a correlated equilibrium that yields a payoff profile such that both players have
a higher payoff than in the mixed payoff profile. To that end, specify the probability space
(Ω, π), the information partitions P1 and P2, and strategies σ1 and σ2 on them, and show
that this forms indeed a correlated equilibrium.

(b) Briefly describe the connection of correlated equilibria to Nash equilibria.



(additional room for answer to Question 2)
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Question 3 (4+4+2+2 points) Complexity

(a) Is the problem of computing mixed-strategy Nash equilibria for finite zero-sum games
exponential or not? Justify your answer.

(b) Order the following complexity classes with respect to class inclusion from smallest to
largest: TFNP, FP, FNP, PPAD.

(c) The search problem Nash consists of finding a mixed-strategy Nash equilibrium for a given
finite two-player strategic game. Name the complexity class for which Nash is complete.
Name the prototypical complete problem for this complexity class used to prove this result.

(d) The search problem 2nd-Nash consists of finding a second, different mixed-strategy Nash
equilibrium for a given finite two-player strategic game and a first mixed-strategy Nash
equilibrium for it. Specify the computational complexity of 2nd-Nash.



(additional room for answer to Question 3)
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Question 4 (8+2+8 points) Repeated Games

Consider the infinitely repeated prisoner’s dilemma. The payoff matrix of the stage game is
given below.

Player 1

Player 2
C D

C 3, 3 0, 10
D 10, 0 1, 1

(a) Under the discounting preference criterium, for which discount factor 0 < δ < 1 is
(Grim,Grim) a Nash equilibrium? Justify your answer.

(Hint: The Grim strategy starts with playing C. After any play of D it plays D forever.)

(b) What is player 1’s minimax payoff?

(c) Consider the following payoff profiles under the limit-of-means preference criterium. For
each payoff profile, either construct two automata that form a Nash equilibrium or argue
that no Nash equilibrium with the given payoffs exists.

• (5, 5)

• (6, 6)

• (3, 0)



(additional room for answer to Question 4)
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Question 5 (6+2+6 points) Imperfect Information Games

Consider the following three extensive games with imperfect information:

1

2

1

(i)

21

(ii)

3

1

1

2

2

(iii)

(a) For each game (i), (ii), (iii) state whether it is a game of perfect recall. Justify your answer.

(b) In as few words as possible, explain the difference between a mixed strategy and a behav-
ioral strategy.

(c) Consider the following strategic game with imperfect information:

1

2

(1, 1, 1)(3, 3, 2) (0, 0, 0)

(4, 4, 0) (0, 0, 1)

D C

L R d c

L R

3

Consider the Nash equilibrium β, with β1(〈〉)(D) = 1, β2(〈C〉)(c) = 1
3 , and β3({〈D〉, 〈C, d〉})(L) =

1. Does a belief µ exist, such that (β, µ) is a sequential equilibrium? Justify your answer.



(additional room for answer to Question 5)
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Question 6 (4+8+6 points) Vickrey-Clarke-Groves Mechanism

(a) VCG mechanisms are (1) social welfare maximizing and (2) incentive compatible. Briefly
describe what these two properties mean.

(b) In a k-item auction, k identical items are to be sold. Each bidder i = 1, . . . , n can get at
most one of the items and has a privately known valuation wi for the item. For simplicity,
assume that w1 > w2 > · · · > wn. The set of alternatives A = Nk consists of all k-
ary subsets of players. Each alternative represents the players who will receive an item.
Formalize the k-item auction as a VCG mechanism M = 〈f, (pi)i∈N 〉 that uses Clarke
pivot functions.

(c) Consider the mechanism M′ = 〈f ′, (p′i)i∈N 〉 implementing a k-item auction, with social
choice function

f ′(v1, . . . , vn) = {i ∈ N | 1 ≤ i ≤ k},

and payment functions

p′i(a) =

{
wi+1, if i ∈ a,
0, otherwise,

for all a ∈ A.

Here, the i-th highest bidding winner has to pay the (i+1)-st highest bid, i. e., the highest
bidding player pays the second highest bid, the second highest bidder pays the third highest
bid, and so on. Non-winning players pay nothing.

Construct a counterexample that proves that M′ is not incentive compatible.

(Hint: There is a counterexample with only three bidders.)



(additional room for answer to Question 6)
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