Principles of Knowledge Representation and Reasoning Reasoning about Actual Causality

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 17, 2018

UNI FREIBURG

Literature

Responsibility and Blame

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Example (Suzy and Billy throwing rocks again)

Suzy and Billy both throw rocks at a bottle, but Suzy's hits the bottle, and Billy's doesn't (although it would have hit had Suzy's not hit first). The bottle shatters.

- To give an argument for why Suzy is a cause for the bottle's shattering (and Billy is not), we had to make adaptions to our model of the situation (viz., witness (*W* = {BH}, *w* = 0, *x*' = 0) in modified HP).
- Intuitively, the more adaptions we have to make to prove s.th. a cause for an effect (the bigger \vec{W}), the less responsibility we are ready to attribute to the cause.

Responsibility and Blame

Literature

BURG

Literature

Example (Disjunctive Forest Fire again)

Forest fire breaks out in case there is lightning or a matched lit. As a matter of fact, there was lightning and a matched lit.

- Using but-for cause or the modified HP definition, neither *L* nor *MD* is a cause, but both *L* and *MD* are part of the cause $L \lor MD$.
- Intuitively, the bigger the cause, the less responsibility we are ready to attribute to the parts of the cause.

Definition (Responsibility)

The degree of responsibility of X = x for φ in (M, \vec{u}) , denoted $dr((M, \vec{u}), (X = x), \varphi)$, is

- **0** if X = x is not part of a cause of φ in (M, \vec{u}) ;
- 1/k if there exists a cause $\vec{X} = \vec{x}$ of φ and a witness $(\vec{W}, \vec{w}, \vec{x}')$ to $\vec{X} = \vec{x}$ to $\vec{X} = \vec{x}$ being a cause of φ in (M, \vec{u}) such that

(a)
$$X = x$$
 is part of $\vec{X} = \vec{x}$

- (b) $|\vec{W}| + |\vec{X}| = k$, and
- (c) *k* is minimal, in that there is no cause $\vec{X}_1 = \vec{x}_1$ for φ in (M, \vec{u}) and witness $(\vec{W}', \vec{w}', \vec{x}'_1)$ to being a cause of φ in (M, \vec{u}) that includes X = x with $|\vec{W}'| + |\vec{X}'_1| < k$.

Responsibility and Blame

Literature

Literature

Rock Throwing, (M, (1, 1))

But-For Cause: Both ST = 1, BT = 1 are part of the cause $ST = 1 \lor BT = 1$.

$$dr((M,(1,1)),(ST = 1),(BS = 1)) = \frac{1}{|\emptyset| + |\{ST = 1, BS = 1\}|} = 1/2 dr((M,(1,1)),(BT = 1),(BS = 1)) = \frac{1}{|\emptyset| + |\{ST = 1, BS = 1\}|} = 1/2$$

HP definitions: Only ST = 1 is a cause, but we have to make at least one change to the model to prove that.

$$dr((M, (1, 1)), (ST = 1), (BS = 1)) = \frac{1}{|\{BH=0\}| + |\{ST=1\}|} = 1/2$$

$$dr((M, (1, 1)), (BT = 1), (BS = 1)) = 0$$

Application: Disjunctive Forest Fire

Responsibility and Blame

Literature

Disjunctive Forest Fire, (M, (1, 1))

But-for cause and modified HP definition: L = 1, MD = 1 are part of the cause $L = 1 \lor MD = 1$.

$$= dr((M, (1, 1)), (L = 1), (FF = 1)) = \frac{1}{|\emptyset| + |\{L = 1, MD = 1\}|} = 1/2$$

$$= dr((M,(1,1)), (MD = 1), (FF = 1)) = \frac{1}{|\emptyset| + |\{L=1, MD=1\}|} = 1/2$$

original and updated HP definition: L = 1 and MD = 1 are seperate causes with witnesses ({MD},0,0) and ({L},0,0), respectively.

$$dr((M,(1,1)), (L = 1), (FF = 1)) = \frac{1}{|\{MD=0\}| + |\{L=1\}|} = 1/2 dr((M,(1,1)), (MD = 1), (FF = 1)) = \frac{1}{|\{L=0\}| + |\{MD=1\}|} = 1/2$$

8/19

- The attribution of blame (rather than responsibility) requires to take some agent's epistemic state before the actual situation occured into account.
- A responsible agent might have been uncertain about the actual outcome, and therefore deserves less blame.
- Two sources of uncertainty:
 - What values the (exogeneous) variables have, i.e., uncertainty about *u*.
 - E.g., in the conjunctive Forest Fire, you consider possible that there was no lightning.
 - How the world works, i.e., uncertainty about *M*.
 - E.g., you consider possible that only lightnings cause fire but not lit matches.

Literature

Literature

Definition (Epistemic State)

An agent's epistemic state is given by a pair (\mathcal{K} , Pr), where \mathcal{K} is a set of situations (M, \vec{u}), and Pr is a probability distribution over \mathcal{K} .

- Additional assumption: In case this definition is used to compute a degree of blame to X = x, it is assumed that $(M, \vec{u}) \models X = x$ for all $(M, \vec{u}) \in \mathcal{K}$ holds.
- Justifications for the assumption: If we ask for the degree of blame to X = x, we take the occurence of X = x as given.

Literature

Definition (Blame)

()

The degree of blame of X = x for φ relative to epistemic state (\mathcal{K}, Pr) , denoted $db(\mathcal{K}, Pr, X = x, \varphi)$ is

$$\sum_{M,\vec{u})\in\mathcal{K}} dr((M,\vec{u}), X = x, \varphi) Pr((M,\vec{u}))$$

Example: Disjunctive Forest Fire

Responsibility and Blame

Literature

12/19

- Consider the following situations:
 - (M_1 , (1, 1)): Fire breaks out if L = 1 or MD = 1, both of which hold.
 - $(M_2, (1, 1))$: Fire breaks out if L = 1, which is the case. MD = 1 also holds, but does not cause fire.
- How much blame does the lit match deserve for FF = 1, if:

$$\mathcal{K} = \{(M_1, (1, 1))\}, Pr((M, \vec{u})) = 1?$$

$$1/2 \cdot 1 = 1/2$$

$$\mathcal{K} = \{(M_2, (1, 1))\}, Pr((M, \vec{u})) = 1?$$

$$0 \cdot 1 = 0$$

$$\mathcal{K} = \{(M_1, (1, 1)), (M_2, (1, 1))\}, Pr((M, \vec{u})) = 1/2?$$

$$(1/2 \cdot 1/2) + (0 \cdot 1/2) = 1/4$$

Literature

Example (Doctor)

A doctor treats a patient with a particular drug. The doctor does not know the drug would have a side effect which kills the patient.

Especially in legal contexts, to determine blame, it can be more relevant to represent what should have been known (probably along with a representation of what actually was known).

Psychology of Counterfactual Reasoning

Responsibility and Blame

Literature

- Modeling various types of counterfactual thinking
 - Additive Upward: "If I started studying three days ago, instead of last night, I could have done better on my test."
 - Subtractive Upward: "I should have never started drinking, then life would be much easier."
 - Additive Downward: "If I went drinking last night as well, I would have done even worse."
 - Subtractive Downward: "If I didn't start studying two days ago, I would have done much worse."

Possible Topics for Projects and Theses

- Models of Relief & Regret: Robot expresses relief and regret, understands human's relief and regret. Tells human things could have turned out worse to make them feel better.
- Learning from failure: Robot understands when it did wrong and adapts behavior accordingly. Tells humans how they could have done better.
- Means and Side effects: In various ethical theories, this distinction is essential to moral permissibility judments.
- Explanations and Justifications
 - Justifications: Robot justifies a decision it has made, or tells human how to justify his/her decision.
 - Explanation: Takes the epistemic state of the addressee into account, viz., if I ask the robot to explain some phenomenon to me, I might not want it to tell me things I already know.
- Special topics: Thankworthiness, Volition & Blame

Responsibility and Blame

Literature

BURG

Literature

In the counterfactual world, where no one of you attended the KR lecture, the lecture would not have been a success. Thanks for attending and

Good luck for the exams :-)

Literature

Literature

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Literature I

Responsibility and Blame Literature Pearl, J., Mackenzie, D. The Book of WHY – The New Science of Cause and Effect, Basic Books, 2018. Halpern, J. Y. 5 Actual Causality, MIT Press, 2016.

19/19