Responsibility and Blame
Motivating Example I: Responsibility

Example (Suzy and Billy throwing rocks again)

Suzy and Billy both throw rocks at a bottle, but Suzy’s hits the bottle, and Billy’s doesn’t (although it would have hit had Suzy’s not hit first). The bottle shatters.

- To give an argument for why Suzy is a cause for the bottle’s shattering (and Billy is not), we had to make adaptions to our model of the situation (viz., witness \(\vec{W} = \{BH\}, \vec{w} = 0, \vec{x}' = 0 \) in modified HP).

- Intuitively, the more adaptions we have to make to prove s.th. a cause for an effect (the bigger \(\vec{W} \)), the less responsibility we are ready to attribute to the cause.
Motivating Example II: Responsibility

Example (Disjunctive Forest Fire again)

Forest fire breaks out in case there is lightning or a matched lit. As a matter of fact, there was lightning and a matched lit.

- Using but-for cause or the modified HP definition, neither L nor MD is a cause, but both L and MD are part of the cause $L \lor MD$.
- Intuitively, the bigger the cause, the less responsibility we are ready to attribute to the parts of the cause.
Definition: Responsibility

Definition (Responsibility)

The degree of responsibility of $X = x$ for φ in (M, \vec{u}), denoted $dr((M, \vec{u}), (X = x), \varphi)$, is

- 0 if $X = x$ is not part of a cause of φ in (M, \vec{u});
- $1/k$ if there exists a cause $\vec{X} = \vec{x}$ of φ and a witness $(\vec{W}, \vec{w}, \vec{x}')$ to $\vec{X} = \vec{x}$ to $\vec{X} = \vec{x}$ being a cause of φ in (M, \vec{u}) such that

 (a) $X = x$ is part of $\vec{X} = \vec{x}$,
 (b) $|\vec{W}| + |\vec{X}| = k$, and
 (c) k is minimal, in that there is no cause $\vec{X}_1 = \vec{x}_1$ for φ in (M, \vec{u}) and witness $(\vec{W}', \vec{w}', \vec{x}_1')$ to being a cause of φ in (M, \vec{u}) that includes $X = x$ with $|\vec{W}'| + |\vec{X}_1'| < k$.

Application: Rock Throwing

- **Rock Throwing, \((M,(1,1))\)**
 - But-For Cause: Both \(ST = 1, BT = 1\) are part of the cause \(ST = 1 \lor BT = 1\).
 - \(dr((M,(1,1)), (ST = 1), (BS = 1)) = \frac{1}{|\emptyset + \{ST=1,BS=1\}|} = \frac{1}{2}\)
 - \(dr((M,(1,1)), (BT = 1), (BS = 1)) = \frac{1}{|\emptyset + \{ST=1,BS=1\}|} = \frac{1}{2}\)
 - HP definitions: Only \(ST = 1\) is a cause, but we have to make at least one change to the model to prove that.
 - \(dr((M,(1,1)), (ST = 1), (BS = 1)) = \frac{1}{|\{BH=0\} + \{ST=1\}|} = \frac{1}{2}\)
 - \(dr((M,(1,1)), (BT = 1), (BS = 1)) = 0\)
Application: Disjunctive Forest Fire

Disjunctive Forest Fire, \((M, (1, 1))\)

- But-for cause and modified HP definition: \(L = 1, MD = 1\) are part of the cause \(L = 1 \lor MD = 1\).
 - \(dr((M, (1, 1)), (L = 1), (FF = 1)) = \frac{1}{|\emptyset| + |\{L=1, MD=1\}|} = 1/2\)
 - \(dr((M, (1, 1)), (MD = 1), (FF = 1)) = \frac{1}{|\emptyset| + |\{L=1, MD=1\}|} = 1/2\)

- Original and updated HP definition: \(L = 1\) and \(MD = 1\) are separate causes with witnesses \((\{MD\}, 0, 0)\) and \((\{L\}, 0, 0)\), respectively.
 - \(dr((M, (1, 1)), (L = 1), (FF = 1)) = \frac{1}{|\{MD=0\}| + |\{L=1\}|} = 1/2\)
 - \(dr((M, (1, 1)), (MD = 1), (FF = 1)) = \frac{1}{|\{L=0\}| + |\{MD=1\}|} = 1/2\)
Epistemic States: Motivation

- The attribution of blame (rather than responsibility) requires to take some agent’s epistemic state before the actual situation occurred into account.

- A responsible agent might have been uncertain about the actual outcome, and therefore deserves less blame.

- Two sources of uncertainty:
 - What values the (exogeneous) variables have, i.e., uncertainty about \vec{u}.
 - E.g., in the conjunctive Forest Fire, you consider possible that there was no lightning.
 - How the world works, i.e., uncertainty about M.
 - E.g., you consider possible that only lightnings cause fire but not lit matches.
Definition (Epistemic State)

An agent’s **epistemic state** is given by a pair \((\mathcal{K}, Pr)\), where \(\mathcal{K}\) is a set of situations \((M, \vec{u})\), and \(Pr\) is a probability distribution over \(\mathcal{K}\).

- **Additional assumption**: In case this definition is used to compute a degree of blame to \(X = x\), it is assumed that \((M, \vec{u}) \models X = x\) for all \((M, \vec{u}) \in \mathcal{K}\) holds.
- **Justifications for the assumption**: If we ask for the degree of blame to \(X = x\), we take the occurrence of \(X = x\) as given.
Definition: Blame

The degree of blame of $X = x$ for φ relative to epistemic state (\mathcal{K}, Pr), denoted $db(\mathcal{K}, Pr, X = x, \varphi)$ is

$$\sum_{(M, \vec{u}) \in \mathcal{K}} dr((M, \vec{u}), X = x, \varphi) Pr((M, \vec{u}))$$
Example: Conjunctive Forest Fire

Consider the following situations:

- $(M_1, (1, 1))$: Fire breaks out if $L = 1$ or $MD = 1$, both of which hold.
- $(M_2, (1, 1))$: Fire breaks out if $L = 1$, which is the case. $MD = 1$ also holds, but does not cause fire.

How much blame does the lit match deserve for $FF = 1$, if:

- $\mathcal{K} = \{(M_1, (1, 1))\}, \Pr((M, \bar{u})) = 1$?
 - $1/2 \cdot 1 = 1/2$

- $\mathcal{K} = \{(M_2, (1, 1))\}, \Pr((M, \bar{u})) = 1$?
 - $0 \cdot 1 = 0$

- $\mathcal{K} = \{(M_1, (1, 1)), (M_2, (1, 1))\}, \Pr((M, \bar{u})) = 1/2$?
 - $(1/2 \cdot 1/2) + (0 \cdot 1/2) = 1/4$
Note: Obliged Epistemic State

Example (Doctor)

A doctor treats a patient with a particular drug. The doctor does not know the drug would have a side effect which kills the patient.

- Especially in legal contexts, to determine blame, it can be more relevant to represent what should have been known (probably along with a representation of what actually was known).
Psychology of Counterfactual Reasoning

- Modeling various types of counterfactual thinking
 - **Additive Upward**: “If I started studying three days ago, instead of last night, I could have done better on my test.”
 - **Subtractive Upward**: “I should have never started drinking, then life would be much easier.”
 - **Additive Downward**: “If I went drinking last night as well, I would have done even worse.”
 - **Subtractive Downward**: “If I didn’t start studying two days ago, I would have done much worse.”
Possible Topics for Projects and Theses

- **Models of Relief & Regret:** Robot expresses relief and regret, understands human’s relief and regret. Tells human things could have turned out worse to make them feel better.

- **Learning from failure:** Robot understands when it did wrong and adapts behavior accordingly. Tells humans how they could have done better.

- **Means and Side effects:** In various ethical theories, this distinction is essential to moral permissibility judgments.

- **Explanations and Justifications**
 - **Justifications:** Robot justifies a decision it has made, or tells human how to justify his/her decision.
 - **Explanation:** Takes the epistemic state of the addressee into account, viz., if I ask the robot to explain some phenomenon to me, I might not want it to tell me things I already know.

- **Special topics:** Thankworthiness, Volition & Blame
In the counterfactual world, where no one of you attended the KR lecture, the lecture would not have been a success. Thanks for attending and

Good luck for the exams :-))
Literature
Pearl, J., Mackenzie, D.

Halpern, J. Y.