Principles of
 Knowledge Representation and Reasoning

Reasoning about Actual Causality

Bernhard Nebel, Felix Lindner, and Thorsten Engesser

April 17, 2018

HP Definitions of Actual Causality, and Normality

Rock Example (Intro)

HP Definitions of Actual
Causality, and Normality

Example (Throwing Rock at Bottle)

Suzy and Billy both throw rocks at a bottle, but Suzy's hits the bottle, and Billy's doesn't (although it would have hit had Suzy's not hit first). The bottle shatters. Who caused the bottle to shatter?

Rock Example (Model)

- Model M involves five (boolean) endogeneous variables $S T$ (Suzy throws), BT (Billy throws), SH (Suzy's rock hits the bottle), $B H$ (Billy's rock hits the bottle), $B S$ (bottle shatters).
- The exogeneous variable U ranges over pairs of boolean values determining who throws and who does not.
- Structural equations:
- $S T:=U=(1,0) \vee U=(1,1)$
- $B T:=U=(0,1) \vee U=(1,1)$
- $S H:=S T=1$
- $B H:=B T=1 \wedge S H=0$

■ $B S:=S H=1 \vee B H=1$

- In (M, (1,1)), neither $S T$ nor $B T$ are but-for causes of $B S$. But intuitively, we want $S T$ be the cause of $B S$ but not $B T$.

The Template of HP-Definitions

Definition (Actual Cause)

$\vec{X}=\vec{x}$ is an actual cause of φ in the causal setting (M, \vec{u}) iff
AC1: $(M, \vec{u})=(\vec{X}=\vec{x})$ and $(M, \vec{u})=\varphi$

- AC2: see next slides
- AC3: \vec{X} is minimal, i.e., there is no strict subset \vec{X}^{\prime} of \vec{X}, s.th. $\vec{X}^{\prime}=\vec{X}^{\prime}$ satisfies conditions AC1 and AC2, where \vec{x}^{\prime} is the restriction of \vec{x} to the variables in \vec{X}^{\prime}.

HP Definitions of Actual
Causality, and Normality

Original HP Definition

Definition (Original HP)

HP Definitions of Actual

- AC2(a): There is a partition of \mathcal{V} into two disjoint subsets \vec{Z} and \vec{W} with $\vec{X} \subseteq \vec{Z}$ and a setting \vec{x}^{\prime} and \vec{w} of the variables in \vec{X} and \vec{W}, such that

$$
(M, \vec{u}) \vDash\left[\vec{X} \leftarrow \vec{x}^{\prime}, \vec{W} \leftarrow \vec{w}\right] \neg \varphi
$$

AC2(\mathbf{b}°): If \vec{z}^{*} is such that $(M, \vec{u}) \models \vec{Z}=\vec{z}^{*}$, then for all subsets \vec{Z}^{\prime} of $\vec{Z}-\vec{X}$, we have

$$
(M, \vec{u}) \vDash\left[\vec{X} \leftarrow \vec{x}, \vec{W} \leftarrow \vec{w}, \vec{Z}^{\prime} \leftarrow \vec{z}^{*}\right] \varphi
$$

Rock Example: Suzy is a Cause

- Is $S T$ a cause of $B S$ in situation ($M,(1,1)$)? Yes.

AC1:

$$
\square(M,(1,1)) \mid=S T=1 \text { and }(M,(1,1)) \mid=B S=1 \text { © }
$$

HP Definitions of Actual

- AC2:
- Guess $\vec{Z}=\{S T, S H, B H, B S\}, \vec{W}=\{B T\}, w=0$
- (a): $(M,(1,1))=[S T \leftarrow 0, B T \leftarrow 0] \neg B S$
- (b) ${ }^{\circ}$): $(M,(1,1)) \mid=[S T \leftarrow 1, B T \leftarrow 0] B S$,
$(M,(1,1)) \vDash[S T \leftarrow 1, B T \leftarrow 0, S H \leftarrow 1] B S$, $(M,(1,1))=[S T \leftarrow 1, B T \leftarrow 0, B H \leftarrow 0] B S$, $(M,(1,1))=[S T \leftarrow 1, B T \leftarrow 0, B S \leftarrow 1] B S$, $(M,(1,1))=[S T \leftarrow 1, B T \leftarrow 0, S H \leftarrow 1, B H \leftarrow 0] B S$, $(M,(1,1))=[S T \leftarrow 1, B T \leftarrow 0, S H \leftarrow 1, B S \leftarrow 1] B S$, $(M,(1,1))=[S T \leftarrow 1, B T \leftarrow 0, B H \leftarrow 0, B S \leftarrow 1] B S$, $(M,(1,1))=[S T \leftarrow 1, B T \leftarrow 0, S H \leftarrow 1, B H \leftarrow 0, B S \leftarrow 1] B S$

AC3: $S T$ is a singleton (:)

Rock Example: Billy is no Cause

- Is $B T$ a cause of $B S$ in situation $(M,(1,1))$? No.
- AC1:

HP Definitions of Actual

- $(M,(1,1)) \mid=B T=1$ and $(M,(1,1)) \mid=B S=1$ (2)
- AC2:
- Now we have to show that there is no partition by exhaustingly searching for it and finally failing. For example, consider $\vec{Z}=\{B T, S H, B H, B S\}, \vec{W}=\{S T\}, w=0$
- (a): $(M,(1,1)) \mid=[B T \leftarrow 0, S T \leftarrow 0] \neg B S$
- (b): $(M,(1,1))=[B T \leftarrow 1, S T \leftarrow 0, B H \leftarrow 0] \neg B S$
- Next try: $\vec{Z}=\{B T, S H, B S\}, \vec{W}=\{S T, B H\}, w=(0,1)$

■ (a): $(M,(1,1)) \mid=[B T \leftarrow 0, S T \leftarrow 0, B H \leftarrow 0] \neg B S \oplus$, but then same problem as before for (\mathbf{b}^{0}). Otherwise $(M,(1,1))=[B T \leftarrow 0, S T \leftarrow 0, B H \leftarrow 1] B S$ ©.

- AC3: $B T$ is a singleton (:)

Witness

Definition (Witness)

The tuple ($\vec{W}, \vec{w}, \vec{x}^{\prime}$) in condition AC2 of the HP definitions of causality are said to be a witness to the fact that $\vec{X}=\vec{x}$ is a cause of φ. The witness $\left(\emptyset, \emptyset, \vec{x}^{\prime}\right)$ denotes the special case that $\vec{W}=\emptyset$.

Example (Witness of Suzy causing the Bottle's Shattering) ($\{B T\}, 0,0$)

HP Definitions of Actual

Shooting Example (Model)

Example (Shooting)

A prisoner dies either if A loads B 's gun and B shoots, or if C loads and shoots his gun.

- Endogeneous variables D (prisoner's death), A (A loads B's gun), B (B shoots), C (C loads and shoots).
$\square D:=(A \wedge B) \vee C$, values of A, B, C are determined by one exogeneous variable U in the obvious way.
- In situation (M, (1,0,1)), A loads B's gun, B does not shoot,
but C shoots (consequently, the prisoner dies).
- Is A is a cause for D in $(M,(1,0,1))$?

Shooting Example: A is a Cause of D

HP Definitions of Actual
Causality, and Normality

- Is A is a cause for D in $(M,(1,0,1))$? Yes.
- Consider witness $(\{B, C\},(1,0), 0)$, i.e., set $\vec{Z}=\{A, D\}$, $\vec{W}=\{B, C\}$, and $\vec{w}=(1,0)$
- AC2(a) $(M,(1,0,1)) \mid=[A \leftarrow 0, B \leftarrow 1, C \leftarrow 0] D=0$ ©
- AC2(b ${ }^{\circ}$): $(M,(1,0,1)) \vDash[A \leftarrow 1, B \leftarrow 1, C \leftarrow 0] D=1$, $(M,(1,0,1))=[A \leftarrow 1, B \leftarrow 1, C \leftarrow 0, D \leftarrow 1] D=1$ ©
- The sufficiency conditions seems to be too weak.

Updated HP-Definition

Definition (Updated HP)

AC2(a) same as original HP definition

HP Definitions of Actual
Causality, and Normality

Literature

AC2(\mathbf{b}^{u}) If \vec{z}^{*} is such that $(M, \vec{u})=\vec{Z}=\vec{z}^{*}$, then for all subsets \vec{W}^{\prime} of \vec{W} and subsets \vec{Z}^{\prime} of $\vec{Z}-\vec{X}$, we have

$$
(M, \vec{u}) \vDash\left[\vec{X} \leftarrow \vec{x}, \vec{W}^{\prime} \leftarrow \vec{w}, \vec{Z}^{\prime} \leftarrow \vec{z}^{*}\right] \varphi
$$

- According to updated HP definition, φ must hold even if only some of the values in \vec{W} are set to w.
- In the shooting example and under the chosen \vec{Z}, \vec{W}, w, we get $(M, \vec{u}) \not \models[A \leftarrow 1, C \leftarrow 0] \neg(D=1)$, so A 's loading the gun was not sufficient for D 's death, and hence, A did not cause D according to the updated HP definition.

Modified HP Definition

Definition (Modified HP)

- AC2 $\left(\mathbf{a}^{m}\right)$ There is a set \vec{W} of variables in \mathcal{V} and a setting \vec{x}^{\prime} of the variables in \vec{X} such that if $(M, \vec{u}) \mid=\vec{W}=\vec{w}^{*}$, then

$$
(M, \vec{u}) \mid=\left[\vec{X} \leftarrow \vec{x}^{\prime}, \vec{W} \leftarrow \vec{w}^{*}\right] \neg \varphi
$$

- Here, the idea is that all that counts are the values the variables had in the situation to be analysed. So, this definition just asks if \vec{X} is a but-for cause given we fix some of the variables to their actual values.
- No need for an extra sufficiency condition: We already know that φ holds when the variables were not changed.

Modified HP Definition: Some Notes

- Computationally simpler than the original and updated

HP Definitions of Actual definitions.

- Solves the problems both in the Rock example, witness ($\{B H\}, 0,0$), and in the Shooting example (no witness for A).
- Suffers from similar problems as but-for causality in disjunctive forest fire. But: Considering Disjunctive Causes is an option! $L=1 \vee M D=1$ being a cause of $F F$ just means that the fact that at least one of $L=1, M D=1$ holds is the cause of $F F$.

Relationships (without proofs)

Theorem (see Halpern, Proposition 2.2.2)

If $X=x$ is a but-for cause of $Y=y$ in (M, \vec{u}), then $X=x$ is a cause of $Y=y$ according to all three variants of the HP definition.

Theorem (see Halpern, Proposition 2.2.3)

- If $X=x$ is part of a cause of φ in (M, \vec{u}) according to the modified HP definition, then $X=x$ is a cause of φ in (M, \vec{u}) according to the original and the updated HP definition.
- If $X=x$ is part of a cause of φ in (M, \vec{u}) according to the updated HP definition, then $X=x$ is a cause of φ in (M, \vec{u}) according to the original HP definition.

Normality

Example (Normality, Knobe \& Fraser)

The receptionist in the philosophy department keeps her desk stocked with pens. The administrative assistants are allowed to take the pens, but faculty members are supposed to buy their own. On Monday morning, one of the administrative assistants encounters Professor Smith walking past the receptionist's desk. Both take pens. Later that day, the receptionist needs to take an important message, but she has a problem: There are no pens left on her desk.

- Who is the cause of there not being pens?
- Kahnemann and Miller:"an event is more likely to be undone by altering exceptional than route aspects of the causal chain that led to it".

Extended Causal Model

Definition (Extended Causal Model)

HP Definitions of Actual
Causality, and Normality

An extended causal model is a tuple $M=(\mathcal{S}, \mathcal{F}, \succeq)$, where $(\mathcal{S}, \mathcal{F})$ is a causal model, and \succeq is a partial preorder (reflexive, transitive) on worlds.

Definition (World)

In a recursive extended causal model M, a context \vec{u} and interventions $\vec{X}=\vec{x}$ together determine a world $s_{\vec{x}=\vec{x}, \vec{u}}$, viz., a complete assignment of values to all variables in M.

Normality Example: Extended Model

- Exogeneous variable U determines the truth of $P S$ (Prof. Smith takes a pen) and PA (administrative assistant takes a

HP Definitions of Actual pen).
$\square P S:=U=(1,0) \vee U=(1,1), A P:=U=(0,1) \vee U=(1,1)$

- Variable $N P$ is true in case both $P S$ and $P A$ are true.
- $N P:=P S \wedge P A$
- Relevant part of \succeq for context $\vec{u}=(1,1)$:
- $s_{P S=0, \vec{u}} \succ s_{\vec{u}}$: The world in which Smith takes no pen and the assistant does, is more normal than the world in which both take a pen.
$\square s_{\vec{u}} \succ s_{P A=0, \vec{u}}$: The world in which both take a pen, is more normal than the world in which Smith takes a pen and the assitant does not.

Extended Modified HP Definition

Definition (Extended Modified HP Definition)

- AC2 ${ }^{+}\left(\mathbf{a}^{m}\right)$ There is a set \vec{W} of variables in \mathcal{V} and a setting \vec{x}^{\prime} of the variables in \vec{X} such that if $(M, \vec{u}) \mid=\vec{W}=\vec{w}^{*}$, then

$$
s_{\vec{X}=\vec{x}^{\prime}, \vec{W}=\vec{w}^{*}, \vec{u}} \succeq s_{\vec{u}}
$$

and

$$
(M, \vec{u}) \mid=\left[\vec{X} \leftarrow \vec{x}^{\prime}, \vec{W} \leftarrow \vec{w}^{*}\right] \neg \varphi
$$

- So, if we have to make a situation more untypical in order to prove some $\vec{X}=\vec{x}$ a cause, then it is not a cause.
- The original and updated HP definitions can be extended in a similar way.

Normality Example: It was Prof. Smith!

- In $(M,(1,1)), P S=1$ is a cause of $N P=1$ according to the

HP Definitions of Actual
Causality, and Normality extended modified HP definition:

- AC1: $(M,(1,1)) \mid=P S=1 \wedge N P=1$ ©
- $\mathbf{A C 2}^{+}\left(\mathbf{a}^{m}\right)$: Consider witness ($\left.\emptyset, \emptyset, 0\right)$:
- $S_{P S=0, \vec{u}} \succeq S_{\vec{u}}$
$\square(M, \vec{u})=[P S \leftarrow 0] \neg(N P=1) \odot$
AC3: $P S=1$ is a singleton ${ }^{(\cdot)}$
- But $P A=1$ is not a cause of $N P=1$:
- AC1: $(M,(1,1)) \mid=P A=1 \wedge N P=1$ ©
- $\mathbf{A C 2}^{+}\left(\mathbf{a}^{m}\right): s_{P A=0, \vec{u}} \nsucceq s_{\vec{u}}$ ©

Outlook

HP Definitions of Actual
Causality, and
Normality
Literature

- Responsibility \& Blame
- Explanation

HP Definitions
of Actual
Causality, and Normality

Literature

Literature

Literature I

HP Definitions
of Actual
Causality, and
Normality
Literature

Pearl, J., Mackenzie, D.
The Book of WHY - The New Science of Cause and Effect, Basic Books, 2018.
呞 Halpern, J. Y.
Actual Causality,
MIT Press, 2016.

