Principles of Knowledge Representation and Reasoning Reasoning about Actual Causality

BURG

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 17, 2018

Rock Example (Intro)

April 17, 2018

HP Definitions of Actual Causality, and Normality

Literature

Example (Throwing Rock at Bottle)

Suzy and Billy both throw rocks at a bottle, but Suzy's hits the bottle, and Billy's doesn't (although it would have hit had Suzy's not hit first). The bottle shatters. Who caused the bottle to shatter?

Nebel, Lindner, Engesser - KR&R

1 HP Definitions of Actual Causality, and Normality

HP Definitions of Actual Causality, and

Literature

April 17, 2018 Nebel, Lindner, Engesser - KR&R

Rock Example (Model)

- Model *M* involves five (boolean) endogeneous variables *ST* (Suzy throws), BT (Billy throws), SH (Suzy's rock hits the bottle), BH (Billy's rock hits the bottle), BS (bottle shatters).
- The exogeneous variable *U* ranges over pairs of boolean values determining who throws and who does not.
- Structural equations:

$$\blacksquare$$
 $ST := U = (1,0) \lor U = (1,1)$

■
$$BT := U = (0,1) \lor U = (1,1)$$

■
$$SH := ST = 1$$

■
$$BH := BT = 1 \land SH = 0$$

■
$$BS := SH = 1 \lor BH = 1$$

■ In (M, (1, 1)), neither ST nor BT are but-for causes of BS. But intuitively, we want ST be the cause of BS but not BT. **HP Definitions** of Actual Causality, and Normality Literature

5 / 25

The Template of HP-Definitions

HP Definitions of Actual Causality, and Normality

Literature

Definition (Actual Cause)

 $\vec{X} = \vec{x}$ is an actual cause of φ in the causal setting (M, \vec{u}) iff

- **AC1**: $(M, \vec{u}) \models (\vec{X} = \vec{x})$ and $(M, \vec{u}) \models \varphi$
- AC2: see next slides
- AC3: \vec{X} is minimal, i.e., there is no strict subset \vec{X}' of \vec{X} , s.th. $\vec{X}' = \vec{x}'$ satisfies conditions AC1 and AC2, where \vec{x}' is the restriction of \vec{x} to the variables in \vec{X}' .

HP Definitions of Actual

Causality, and

Normality

Literature

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Engesser – KR&R

Rock Example: Suzy is a Cause

■ Is ST a cause of BS in situation (M,(1,1))? Yes.

■ AC1:

■ $(M,(1,1)) \models ST = 1$ and $(M,(1,1)) \models BS = 1 \odot$

■ AC2:

■ Guess $\vec{Z} = \{ST, SH, BH, BS\}, \vec{W} = \{BT\}, w = 0$

- (a): $(M,(1,1)) \models [ST \leftarrow 0,BT \leftarrow 0] \neg BS \odot$
- **(b**°): $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0]BS$,
- $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0,SH \leftarrow 1]BS,$
- $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0,BH \leftarrow 0]BS,$
- $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0,BS \leftarrow 1]BS,$

Nebel, Lindner, Engesser - KR&R

- $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0,SH \leftarrow 1,BH \leftarrow 0]BS,$
- $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0,SH \leftarrow 1,BS \leftarrow 1]BS$
- $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0,BH \leftarrow 0,BS \leftarrow 1]BS,$
- $(M,(1,1)) \models [ST \leftarrow 1,BT \leftarrow 0,SH \leftarrow 1,BH \leftarrow 0,BS \leftarrow 1]BS$

■ AC3: ST is a singleton ③

TEE BEE

Original HP Definition

Definition (Original HP)

■ **AC2(a)**: There is a partition of \mathcal{V} into two disjoint subsets \vec{Z} and \vec{W} with $\vec{X} \subseteq \vec{Z}$ and a setting \vec{x}' and \vec{w} of the variables in \vec{X} and \vec{W} , such that

$$(M, \vec{u}) \models [\vec{X} \leftarrow \vec{x}', \vec{W} \leftarrow \vec{w}] \neg \varphi$$

■ **AC2(b**°): If \vec{z}^* is such that $(M, \vec{u}) \models \vec{Z} = \vec{z}^*$, then for all subsets \vec{Z}' of $\vec{Z} - \vec{X}$, we have

$$(M, \vec{u}) \models [\vec{X} \leftarrow \vec{x}, \vec{W} \leftarrow \vec{w}, \vec{Z}' \leftarrow \vec{z}^*] \varphi$$

FREIBURG

HP Definitions

Causality, and

of Actual

HP Definitions

of Actual Causality, and

April 17, 2018

Nebel, Lindner, Engesser - KR&R

7/2

Rock Example: Billy is no Cause

■ Is BT a cause of BS in situation (M,(1,1))? No.

■ AC1:

 $(M,(1,1)) \models BT = 1 \text{ and } (M,(1,1)) \models BS = 1 \odot$

■ AC2:

- Now we have to show that there is no partition by exhaustingly searching for it and finally failing. For example, consider $\vec{Z} = \{BT, SH, BH, BS\}, \vec{W} = \{ST\}, w = 0$
- **(a)**: $(M,(1,1)) \models [BT \leftarrow 0,ST \leftarrow 0] \neg BS \odot$
- **(b**°): $(M,(1,1)) \models [BT \leftarrow 1,ST \leftarrow 0,BH \leftarrow 0] \neg BS \odot$
- Next try: $\vec{Z} = \{BT, SH, BS\}, \vec{W} = \{ST, BH\}, w = (0, 1)$
- (a): $(M, (1,1)) \models [BT \leftarrow 0, ST \leftarrow 0, BH \leftarrow 0] \neg BS \odot$, but then same problem as before for (b⁰). Otherwise $(M, (1,1)) \models [BT \leftarrow 0, ST \leftarrow 0, BH \leftarrow 1]BS \odot$.
- AC3: BT is a singleton ⊕

FREIBURG

Nebel, Lindner, Engesser – KR&R

April 17, 2018

9 /

April 17, 2018

Witness

HP Definitions of Actual Causality, and

Definition (Witness)

The tuple $(\vec{W}, \vec{w}, \vec{x}')$ in condition AC2 of the HP definitions of causality are said to be a witness to the fact that $\vec{X} = \vec{x}$ is a cause of φ . The witness $(\emptyset, \emptyset, \vec{x}')$ denotes the special case that $\vec{W} = \emptyset$.

Example (Witness of Suzy causing the Bottle's Shattering)

 $({BT}, 0, 0)$

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Shooting Example: A is a Cause of D

HP Definitions of Actual Causality, and Normality

Literature

- Is A is a cause for D in (M,(1,0,1))? Yes.
 - Consider witness ($\{B,C\}$, (1,0), 0), i.e., set $\vec{Z} = \{A,D\}$, $\vec{W} = \{B, C\}, \text{ and } \vec{w} = (1, 0)$
 - **AC2(a)** $(M, (1,0,1)) \models [A \leftarrow 0, B \leftarrow 1, C \leftarrow 0]D = 0 \oplus$
 - **AC2(b**°): $(M, (1,0,1)) \models [A \leftarrow 1, B \leftarrow 1, C \leftarrow 0]D = 1,$ $(M,(1,0,1)) \models [A \leftarrow 1, B \leftarrow 1, C \leftarrow 0, D \leftarrow 1]D = 1 \oplus$
- The sufficiency conditions seems to be too weak.

Shooting Example (Model)

Example (Shooting)

A prisoner dies either if A loads B's gun and B shoots, or if C loads and shoots his gun.

- Endogeneous variables *D* (prisoner's death), *A* (A loads B's gun), B (B shoots), C (C loads and shoots).
- \blacksquare D := $(A \land B) \lor C$, values of A, B, C are determined by one exogeneous variable U in the obvious way.
- In situation (M, (1,0,1)), A loads B's gun, B does not shoot, but C shoots (consequently, the prisoner dies).
- \blacksquare Is A is a cause for D in (M, (1, 0, 1))?

Nebel, Lindner, Engesser - KR&R

Updated HP-Definition

Definition (Updated HP)

- AC2(a) same as original HP definition
- **AC2(b**^{*u*}) If \vec{z}^* is such that $(M, \vec{u}) \models \vec{Z} = \vec{z}^*$, then for all subsets \vec{W}' of \vec{W} and subsets \vec{Z}' of $\vec{Z} - \vec{X}$, we have

$$(M, \vec{u}) \models [\vec{X} \leftarrow \vec{x}, \vec{W}' \leftarrow \vec{w}, \vec{Z}' \leftarrow \vec{z}^*] \varphi$$

- \blacksquare According to updated HP definition, φ must hold even if only some of the values in \vec{W} are set to w.
- In the shooting example and under the chosen \vec{Z} , \vec{W} , \vec{w} , we get $(M, \vec{u}) \not\models [A \leftarrow 1, C \leftarrow 0] \neg (D = 1)$, so A's loading the gun was not sufficient for D's death, and hence, A did not cause D according to the updated HP definition.

HP Definitions of Actual Causality, and

of Actual Causality, and Normality

HP Definitions

April 17, 2018

Nebel, Lindner, Engesser - KR&R

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Modified HP Definition

Definition (Modified HP)

AC2(a^m) There is a set \vec{W} of variables in \mathcal{V} and a setting \vec{x}' of the variables in \vec{X} such that if $(M, \vec{u}) \models \vec{W} = \vec{w}^*$, then

$$(M, \vec{u}) \models [\vec{X} \leftarrow \vec{x}', \vec{W} \leftarrow \vec{w}^*] \neg \varphi$$

- Here, the idea is that all that counts are the values the variables had in the situation to be analysed. So, this definition just asks if \vec{X} is a but-for cause given we fix some of the variables to their actual values.
- No need for an extra sufficiency condition: We already know that φ holds when the variables were not changed.

SE

HP Definitions

Causality, and

of Actual

Normality

April 17, 2018

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Relationships (without proofs)

Theorem (see Halpern, Proposition 2.2.2)

If X = x is a but-for cause of Y = y in (M, \vec{u}) , then X = x is a cause of Y = v according to all three variants of the HP definition.

Theorem (see Halpern, Proposition 2.2.3)

- If X = x is part of a cause of φ in (M, \vec{u}) according to the modified HP definition, then X = x is a cause of φ in (M, \vec{u}) according to the original and the updated HP definition.
- If X = x is part of a cause of φ in (M, \vec{u}) according to the updated HP definition, then X = x is a cause of φ in (M, \vec{u}) according to the original HP definition.

HP Definitions of Actual Causality, and Normality

Literature

Modified HP Definition: Some Notes

Computationally simpler than the original and updated definitions.

- Solves the problems both in the Rock example, witness ({BH}, 0.0), and in the Shooting example (no witness for *A*).
- Suffers from similar problems as but-for causality in disjunctive forest fire. But: Considering Disjunctive Causes is an option! $L = 1 \lor MD = 1$ being a cause of FF just means that the fact that at least one of L = 1. MD = 1 holds is the cause of FF.

HP Definitions of Actual Causality, and

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Normality

Example (Normality, Knobe & Fraser)

The receptionist in the philosophy department keeps her desk stocked with pens. The administrative assistants are allowed to take the pens, but faculty members are supposed to buy their own. On Monday morning, one of the administrative assistants encounters Professor Smith walking past the receptionist's desk. Both take pens. Later that day, the receptionist needs to take an important message, but she has a problem: There are no pens left on her desk.

- Who is the cause of there not being pens?
- Kahnemann and Miller: "an event is more likely to be undone by altering exceptional than route aspects of the causal chain that led to it".

of Actual Causality, and

HP Definitions

Nebel, Lindner, Engesser - KR&R

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Extended Causal Model

HP Definitions of Actual Causality, and Normality

Definition (Extended Causal Model)

An extended causal model is a tuple $M = (\mathcal{S}, \mathcal{F}, \succeq)$, where $(\mathcal{S}, \mathcal{F})$ is a causal model, and \succeq is a partial preorder (reflexive, transitive) on worlds.

Definition (World)

In a recursive extended causal model M, a context \vec{u} and interventions $\vec{X} = \vec{x}$ together determine a world $s_{\vec{X} = \vec{x}, \vec{u}}$, viz., a complete assignment of values to all variables in M.

FREIBURG

HP Definitions

Causality, and Normality

of Actual

Literature

April 17, 2018

Nebel, Lindner, Engesser - KR&R

18 / 25

Extended Modified HP Definition

Definition (Extended Modified HP Definition)

■ **AC2**⁺(\mathbf{a}^m) There is a set \vec{W} of variables in \mathcal{V} and a setting \vec{x}' of the variables in \vec{X} such that if $(M, \vec{u}) \models \vec{W} = \vec{W}^*$, then

 $s_{ec{X}=ec{X}',ec{W}=ec{W}^*,ec{u}}\succeq s_{ec{u}}$

and

$$(M, \vec{u}) \models [\vec{X} \leftarrow \vec{x}', \vec{W} \leftarrow \vec{w}^*] \neg \varphi$$

- So, if we have to make a situation more untypical in order to prove some $\vec{X} = \vec{x}$ a cause, then it is not a cause.
- The original and updated HP definitions can be extended in a similar way.

FREIBURG

Normality Example: Extended Model

■ Exogeneous variable *U* determines the truth of *PS* (Prof. Smith takes a pen) and *PA* (administrative assistant takes a pen).

■
$$PS := U = (1,0) \lor U = (1,1), AP := U = (0,1) \lor U = (1,1)$$

- Variable *NP* is true in case both *PS* and *PA* are true.
 - \blacksquare NP := PS \land PA
- Relevant part of \succeq for context $\vec{u} = (1,1)$:
 - $s_{PS=0,\vec{u}} \succ s_{\vec{u}}$: The world in which Smith takes no pen and the assistant does, is more normal than the world in which both take a pen.
 - $s_{\vec{u}} \succ s_{PA=0,\vec{u}}$: The world in which both take a pen, is more normal than the world in which Smith takes a pen and the assitant does not.

HP Definitions of Actual Causality, and Normality

Literature

HP Definitions

of Actual Causality, and

Normality

April 17, 2018

Nebel, Lindner, Engesser - KR&R

19 /

Normality Example: It was Prof. Smith!

■ In (M,(1,1)), PS = 1 is a cause of NP = 1 according to the extended modified HP definition:

AC1: $(M, (1, 1)) \models PS = 1 \land NP = 1 \oplus$

AC2⁺(\mathbf{a}^m): Consider witness (\emptyset , \emptyset , 0):

■ $s_{PS=0,\vec{u}} \succeq s_{\vec{u}} \odot$ ■ $(M,\vec{u}) \models [PS \leftarrow 0] \neg (NP = 1) \odot$

■ AC3: PS = 1 is a singleton ⊕

■ But PA = 1 is not a cause of NP = 1:

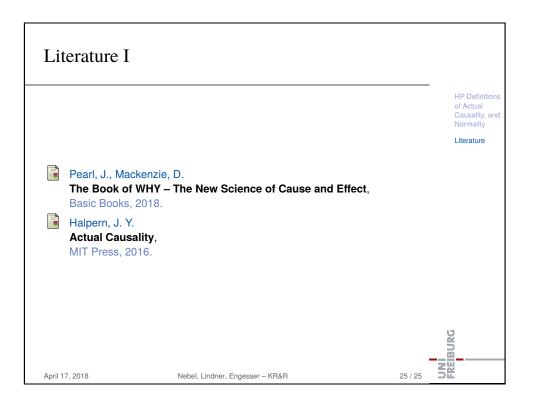
AC1: $(M, (1, 1)) \models PA = 1 \land NP = 1 \odot$

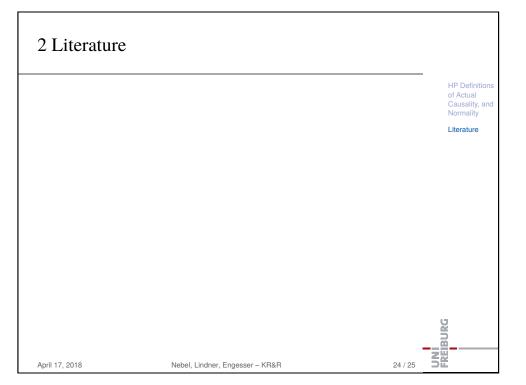
AC2⁺(\mathbf{a}^m): $s_{PA=0,\vec{u}} \not\succeq s_{\vec{u}}$ \odot

FREIBURG

April 17, 2018

Nebel, Lindner, Engesser - KR&R


April 17, 2018


Nebel, Lindner, Engesser - KR&R

Apı

21 / 25

Outlook HP Definitions of Actual Courality, and Courality, and Courality, and Courality and Courali

