Principles of
Knowledge Representation and Reasoning
Answer Set Programming

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
July 21 & 28,2018

1 Introduction

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R

/36

Introduction

ASP: Background

Introduction

Answer set semantics: a formalization of negation as failure
in logic programming (Prolog)

Several formal semantics: well-founded semantics,
perfect-model semantics, inflationary semantics, ...

Can be viewed as a simpler variant of default logic

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 4/36

ASP: Negation as failure

Another interpretation for negation: notx = "It cannot be
shown that x is true"

For example, you are innocent until proven guilty

Example

innocent < notguilty .

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R

5/36

Introduction

ASP: Declarative problem solving

Introduction

What is the problem? instead of: How to solve the problem?
Outsourcing the computation part to an external solver

Problem Solution
Modeling Interpretation
. Computation
Representation Output
July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 6/36

2 Answer Sets

Normal logic programs
Interpretation and Satisfiability
Definition

Formal properties
Stratification

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 8/36

Answer Sets

Normal logic programs I

Let A be a set of first-order atoms.
Rules:

programs

a<bq,...,bym,notcy,. .., notck

where {a,b1,...,bm,C1,...,ck} C A

Meaning similar to default logic:
If

we have derived b4,...,b, and
cannot derive any of ¢4, ..., cx,

then derive a.

Rules without right-hand side (facts): a <

Rules without left-hand side (constraints):
< b1,...,bp,notcy, ..., noteg

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 9/36

Normal logic programs II

Let A be a set of first-order atoms.

Rules:

a<bq,...,bp,notcy,...,notcy

)

where {a,b1,...,bp,c1,...,ck} C A

ais called the head of the rule, denoted by head(r).

The literals by, ..., by, form the positive body of r, denoted
by body™ (r).

The literals notcy,...,notck form the negative body of r,
denoted by body ™ (r).

The body of r is the union of positive and negative body:
body(r) = body™ (r) Ubody ™ (r).

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 10/36

Normal logic
programs

Normal logic programs: Example

Example

bird(X) < eagle(X)

fly(X

(X)
bird(X) < penguin(X)

(X) « bird(X),notnonfly (X)
nonfly (X) < penguin(X)
eagle(eddy) «+

)

penguin(tweety

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R

Normal logic

programs

11/36

Herbrand base and grounded rules

Let P be a normal logic program, i.e., a finite set of rules as
described above.

The Herbrand universe (symb. Up) of P is the set of ground
terms constructed from the function symbols and constants
in P.

The Herbrand base of P (symb. Bp) is the set of ground
atoms constructed from predicate symbols and ground
terms from the Herbrand universe.

From now on, a program will refer to the set of its grounded
rules.

The set of atoms in P is denoted by atoms(P).

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 12/36

Interpretation and

Satisfiability

Herbrand base and grounded rules

Example

bird(eddy) < eagle(eddy)
bird(tweety) < eagle(tweety)

bird(eddy) < penguin(eddy)
bird(tweety) < penguin(tweety)
fly(eddy) < bird(eddy), notnonfly (eddy)
fly (tweety) < bird(tweety), notnonfly (tweety)
nonfly(eddy) <+ penguin(eddy)
nonfly (tweety) <— penguin(tweety)
eagle(eddy) «
penguin(tweety) <

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R

Interpretation an

Satisfiabilty

13/36

d

Satisfaction

A Herbrand interpretation is a subset X of the Herbrand base.
Satisfaction relation:
X EaifaeX.

XErit{bi,...,bm} € X or{a,cy,...,ca} NX #£0,
wherer =a < by,...,bp,notcy, ..., notck.

XEPifX=rforeachreP.

Idea

Idea: “models” as interpretations that are satisfying, stable, and
supported.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 14 /36

Interpretation

Satisfiabilty

and

Positive (not-free) logic programs

Definition (Answer set)

Let P be a logic program without not, X C atoms(P).
X is the (unique) answer set of P if it is the least fixpoint of the
operator:

Fp(X)={a: Ir=a+ by,...,by € Pwith {b1,...,bn} C X}.

Example

p_ a<b, d«f, b+,
|l d<b, c+d, e« f

=0, rM=r©)={p}, P=r(")={bda}, =
r(r2)={b,d.ac}, M*=r(e) ={b,dach=rs __B_

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 15/36

Definition

Gelfond-Lifschitz reduct

Definition (Reduct)

The reduct of a program P with respect to a set of atoms
X C atoms(P) is defined as:

Definition

PX := {head(r) < body™(r): r € P,
¢ ¢ X for each notc € body (r)}

That is, given X,
... delete all rules whose negative part contradicts X
. remove all negated atoms from the remaining rules

Definition (Answer set)
X C atoms(P) is an answer set of P if X is an answer set of PX.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 16/36

Answer sets: Examples

Example

a<-notb, b < nota,

Cc<—a, d <« b. Defon
Example

a<—notb, b < nota,

b+ a, c+b
Example

a<b, b«a

Ju-\y 217&28;2(.)18 o ”Nebe-l, Lmdnér, Engesser—KR&R- " 17/36 B B

Some properties I

Proposition

If an atom a belongs to an answer set of a logic program P, then
a is the head of one of the rules of P.

Formal properties

Proposition

Each answer set of a normal logic program P is a minimal model
of P, i.e., it satisfies all rules in P and there is no proper subset of
P satisfying all rules in P.

Notice: The converse is not true: not each minimal model is an
answer set.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 18/36

Some properties 11

Proposition

Let F be a set of (non-constraint) rules and G be a set of
constraints. A set of atoms X is an answer set of F UG iff it is an
answer set of F that satisfies G.

Proof.

F C FUG implies FX C (FUG)* and hence

Ifpr (FX) C Ifpr((FUG)X)).

=: Assume X is an answer set of F UG, hence X = lfpr((F UG)¥)
and X = G. Since G contains constraints only, it follows that each

a € X is the head of some rule in F. Hence, X C prr(FX), and thus X
is an answer set of F that satisfies G.

<: Similar.

O

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 19/36

Formal properties

Complexity: Existence of answer sets is
NP-complete

Membership in NP: Guess X C atoms(P) (nondet.
polytime), compute PX, compute its closure, compare to X
(everything det. polytime).

NP-hardness: Reduction from 3SAT: an answer set exists iff

the following clauses are satisfiable:
p < notp. b < notp.

for every propositional variable p occurring in the clauses,
and

< not/},not/y, notly

for every clause /1 V12V I3, where I = pif [; = p and I/ = p if
i = —p.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 20/36

Formal properties

Difference to Propositional Logic

The ancestor relation is the transitive closure of the parent
relation.

Transitive closure cannot be (concisely) represented in
propositional/predicate logic.

par(X,Y) — anc(X.Y)

par(X,Z) A\ anc(Z,Y) — anc(X,Y)

The above formulae only guarantee that anc is a superset
of the transitive closure of par.

For transitive closure one needs the minimality condition in
some form: nonmonotonic logics, fixpoint logics, ...

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 21/36

Formal properties

Stratification

The reason for multiple answer sets is the fact that a may
depend on b and simultaneously b may depend on a.

The lack of this kind of circular dependencies makes reasoning
easier.

Definition
A logic program P is stratified if P can be partitioned to

P=PiU---UP,sothatforallie {1,...,n} and
(a < by,...,by,notcy, ..., notek) € Pj,

there is no nota in P; and
there are no occurrences of a anywhere in Py U---UP;_1.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 22/36

Stratification

Stratification

Theorem

A stratified program P has exactly one answer set. The unique

answer set can be computed in polynomial time.

Example

Stratification

Our earlier examples with more than one or no answer sets:

Ps =
Py =

July 21 & 28, 2018

{p < notp}
{p <~ notg, q <« notp}

Nebel, Lindner, Engesser — KR&R 23/36

3 AnsProlog and ASP Tools

Language and notations

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R

25/36

AnsProlog
and ASP
Tools

Programs for Reasoning with Answer Sets

AnsProlog
and ASP

smodels (Niemeld & Simons), dlv (Eiter et al.), clasp Tools

(Schaub et al.), ...
Schematic input:

p(X) :- not q(X). anc(X,Y) :- par(X,Y).

q(X) :- not p(X). anc(X,Y) :- par(X,Z), anc(Z,Y).
r(a). par(a,b). par(a,c). par(b,d).
r(b). female(a).

r(c). male(X) :- not(female(X)).

July 21 & 28, 2018

forefather(X,Y) :-
anc(X,Y), male(X).

Nebel, Lindner, Engesser — KR&R 26/36

AnsProlog

Propositions are any combination of lowercase letters.

Variables are any combination of letters starting with an
uppercase letter.

Write ":-" instead of <.

Integers can be used and so can ne arithmetic operations

(+7_a*a/a%)-
Negation as failure is denoted by not.
Strong negation is denoted by —.

#const n = ... statements can be used to define
constants.

The #hide/#show statements can be used to influence
which iterals are shown in the solution.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R

27 /36

AnsProlog: Choice functions

The literal {b1; ... ; bm}
is true iff any subset of the set {b1,...,bm} is true.

Language and
notations

Example

Generate all interpretations over the atoms a(1),a(2),a(3):
{ a(1); a(2); a3 I.
With strong negation:

-a(X) :- not a(X), X=1..3.
{a(1..3) }.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 28/36

AnsProlog: Choice with cardinality

The literal1 {b1; ...; bm} u
is true iff at least / and at most u atoms (included) are true
within the set {b1,...,bm}.

Language and
notations

Example

Generate all interpretations over the atoms a(1),a(2),a(3),b(1),b(2)
that contain exactly 2 true atoms:

2 { a(1..3); b(1..2) } 2.

Generate all interpretations over the atoms a(1),a(2),a(3),b(1),b(2),
b(3) that do not contain exactly 2 or more true atoms for the same
predicate:

{a(1..3); b(1..3) }.
-2 {a(1..3) } 3.
- 2 { b(1..3) } 3. -

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 29/36

AnsProlog: Domains of variables

The domain of a variable must be known in order to avoid
“unsafe”-error while the program is grounded.

The domain can be set literal-wise, rule-wise, or program

wise.
For limiting the scope within a literal use the syntax:

a(X) : dom(X) or a(X) : X=1..3

Example

num(0..10).
even(2*X) :- num(X), 2*X <=10.
1 {alX) : even(X) } 1.

#show a/1.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 30/36

Example: Graph coloring

Example

#const n = 2.

c(1..n). oo
1 {color(X,I) : c(I)} 1 :- v(X).

:= color(X,I), color(Y,I), e(X,Y), c(I).

% Instance
v(1l..4).
e(1,2).
e(1,3).
e(2,4).
e(3,4).

% e(2,3).

#show color/2.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 31/36

Generate and test

ASP programs are often organized in a “generate-and-test”
style: first describe candidate solutions, then rule out possible
solutions by stating constraints.

Language and

E Xa m p | e notations

% n-Queens encoding %
#const n = 4.

% Generate possible positions %
1 {q(T,1..n) }1 :-~1I=1..n.

% Rule out attacking positions %
:- q(I1,1), q(I2,3), I1 '= I2.

:- q(I,J), q(I+D,J+D), D = 1..n.
:- q(I1,J), q(I+D,J-D), D = 1..n.
July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 32/36

AnsProlog: Miscellaneous

The language is even bigger than that! It includes

Language and
notations

Disjunction in the head

Other operators: #sum,#min,#max,#even,#odd,#avg, ...
Multi-criteria optimizations

Heuristic optimizations

(More on that in the exercises!)

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 34/36

Generate and test: Further example

Problem: In a graph find cliques of size > n

Example

#const n = 3.

edge(X,Y) :- edge(Y,X).
n {clique(X) : node(X)}.

:— clique(X), clique(Y), node(X), node(Y), X!=Y, not edge(X,Y).

% Instance %
node(1..5).
edge(1,2;4).
edge(2,3;4).
edge(3,4).
edge(4,2;5) .

#show clique/1.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 33/36

Literature

& Michael Gelfond and Vladimir Lifschitz.
The stable models semantics for logic programming.
ICLP/SLP, p.1070-1080, 1988.

& Francois Fages.
Consistency of Clark’s completion and existence of stable models.
Meth. of Logic in CS, p51-60, 1994.

& Hudson Turner.
Strong equivalence made easy: nested expressions and weight
constraints.
TPLP, p609-622, 2003.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 35/36

Literature

Language and

& Martin Gebser and Benjamin Kaufmann and André Neumann and v
Torsten Schaub.
Conflict-Driven Answer Set Solving.
IJCAI, p.386-393, 2007.

& llkka Niemela and Patrik Simons
Efficient Implementation of the Well-founded and Stable Model
Semantics.
JICSLP, p.289-303, 1996.

July 21 & 28, 2018 Nebel, Lindner, Engesser — KR&R 36/36

	Introduction
	Answer Sets
	Normal logic programs
	Interpretation and Satisfiability
	Definition
	Formal properties
	Stratification

	AnsProlog and ASP Tools
	Language and notations

