ASP: Background

- **Answer set semantics**: a formalization of negation as failure in logic programming (Prolog)
- Several formal semantics: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic

ASP: Negation as failure

- Another interpretation for negation: \(\neg x \equiv \text{"It cannot be shown that } x \text{ is true"} \)
- For example, you are innocent until proven guilty

Example

\[
\text{innocent} \leftarrow \neg \text{guilty}.
\]
ASP: Declarative problem solving

- What is the problem? instead of: How to solve the problem?
- Outsourcing the computation part to an external solver

2 Answer Sets

- Normal logic programs
- Interpretation and Satisfiability
- Definition
- Formal properties
- Stratification

Normal logic programs I

Let \mathcal{A} be a set of first-order atoms.

Rules:

$$a \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_k$$

where $\{a,b_1,\ldots,b_m,c_1,\ldots,c_k\} \subseteq \mathcal{A}$

- Meaning similar to default logic:
 - If we have derived b_1, \ldots, b_m and cannot derive any of c_1, \ldots, c_k, then derive a.
- Rules without right-hand side (facts): $a \leftarrow$
- Rules without left-hand side (constraints):
 $$\leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_k$$

Normal logic programs II

Let \mathcal{A} be a set of first-order atoms.

Rules:

$$a \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_k$$

where $\{a,b_1,\ldots,b_m,c_1,\ldots,c_k\} \subseteq \mathcal{A}$

- a is called the head of the rule, denoted by head(r).
- The literals b_1, \ldots, b_m form the positive body of r, denoted by body$^+(r)$.
- The literals not$c_1, \ldots, \text{not } c_k$ form the negative body of r, denoted by body$^-(r)$.
- The body of r is the union of positive and negative body: body$(r) = \text{body}^+(r) \cup \text{body}^-(r)$.
Normal logic programs: Example

Example

\[\begin{align*}
\text{bird}(X) & \leftarrow \text{eagle}(X) \\
\text{bird}(X) & \leftarrow \text{penguin}(X) \\
\text{fly}(X) & \leftarrow \text{bird}(X), \text{not nonfly}(X) \\
\text{nonfly}(X) & \leftarrow \text{penguin}(X) \\
\text{eagle}(\text{eddy}) & \leftarrow \\
\text{penguin}(\text{tweety}) & \leftarrow
\end{align*}\]

Herbrand base and grounded rules

Introduction
Answer Sets
Normal logic programs
Interpretation and satisfiability
Formal properties
Stratification
AnsProlog and ASP Tools

Herbrand base and grounded rules

Let \(P \) be a normal logic program, i.e., a finite set of rules as described above.

- The Herbrand universe (symb. \(U_P \)) of \(P \) is the set of ground terms constructed from the function symbols and constants in \(P \).
- The Herbrand base of \(P \) (symb. \(B_P \)) is the set of ground atoms constructed from predicate symbols and ground terms from the Herbrand universe.
- From now on, a program will refer to the set of its grounded rules.
- The set of atoms in \(P \) is denoted by \(\text{atoms}(P) \).

Satisfaction

A Herbrand interpretation is a subset \(X \) of the Herbrand base.

Satisfaction relation:

- \(X \models a \) if \(a \in X \).
- \(X \models r \) if \(\{ b_1, \ldots, b_m \} \not\subseteq X \) or \(\{ a, c_1, \ldots, c_n \} \cap X \neq \emptyset \), where \(r = a \leftarrow b_1, \ldots, b_m, \text{not} c_1, \ldots, \text{not} c_k \).
- \(X \models P \) if \(X \models r \) for each \(r \in P \).

Idea

Idea: “models” as interpretations that are satisfying, stable, and supported.
Positive (not-free) logic programs

Definition (Answer set)
Let P be a logic program without not, $X \subseteq \text{atoms}(P)$. X is the (unique) answer set of P if it is the least fixpoint of the operator:

$$\Gamma_P(X) = \{ a : \exists r = a \leftarrow b_1, \ldots, b_m \in P \text{ with } \{b_1, \ldots, b_m\} \subseteq X \}.$$

Example

$$P = \{ a \leftarrow b, \; d \leftarrow f, \; b \leftarrow \}$$

$$\Gamma^0 = \emptyset, \; \Gamma^1 = \Gamma(\emptyset) = \{b\}, \; \Gamma^2 = \Gamma(\Gamma^1) = \{b, d, a\}, \; \Gamma^3 = \Gamma(\Gamma^2) = \{b, d, a, c\}, \; \Gamma^4 = \Gamma(\Gamma^3) = \{b, d, a, c\} = \Gamma^3$$

Answer sets: Examples

Example

$$a \leftarrow \text{not} b, \; b \leftarrow \text{not} a, \; c \leftarrow a, \; d \leftarrow b.$$

Example

$$a \leftarrow \text{not} b, \; b \leftarrow \text{not} a, \; b \leftarrow a, \; c \leftarrow b.$$

Example

$$a \leftarrow b, \; b \leftarrow a.$$
Some properties II

Proposition

Let \(F \) be a set of (non-constraint) rules and \(G \) be a set of constraints. A set of atoms \(X \) is an answer set of \(F \cup G \) iff it is an answer set of \(F \) that satisfies \(G \).

Proof:

\[F \subseteq F \cup G \implies F^X \subseteq (F \cup G)^X \text{ and hence } \text{lfp}_\Gamma(F^X) \subseteq \text{lfp}_\Gamma((F \cup G)^X). \]

\[\Rightarrow: \text{Assume } X \text{ is an answer set of } F \cup G, \text{ hence } X = \text{lfp}_\Gamma((F \cup G)^X) \text{ and } X \models G. \text{ Since } G \text{ contains constraints only, it follows that each } a \in X \text{ is the head of some rule in } F. \text{ Hence, } X \subseteq \text{lfp}_\Gamma(F^X), \text{ and thus } X \text{ is an answer set of } F \text{ that satisfies } G. \]

\[\Leftarrow: \text{ Similar.} \]

Complexity: Existence of answer sets is NP-complete

1. **Membership in NP:** Guess \(X \subseteq \text{atoms}(P) \) (nondet. polytime), compute \(P^X \), compute its closure, compare to \(X \) (everything det. polytime).

2. **NP-hardness:** Reduction from 3SAT: an answer set exists iff the following clauses are satisfiable:

 \[p \leftarrow \not p. \quad \hat{p} \leftarrow \not p. \]

 for every propositional variable \(p \) occurring in the clauses, and

 \[\not i_1', \not i_2', \not i_3' \]

 for every clause \(l_1 \lor l_2 \lor l_3 \), where \(i_1' = p \) if \(l_1 = p \) and \(i_1' = \hat{p} \) if \(l_1 = \not p \).

Difference to Propositional Logic

- The **ancestor** relation is the transitive closure of the parent relation.
- Transitive closure cannot be (concisely) represented in propositional/predicate logic.

 \[\text{par}(X, Y) \rightarrow \text{anc}(X, Y) \]

 \[\text{par}(X, Z) \land \text{anc}(Z, Y) \rightarrow \text{anc}(X, Y) \]

 The above formulae only guarantee that \(\text{anc} \) is a superset of the transitive closure of \(\text{par} \).
- For transitive closure one needs the minimality condition in some form: nonmonotonic logics, fixpoint logics, ...

Stratification

The reason for multiple answer sets is the fact that \(a \) may depend on \(b \) and simultaneously \(b \) may depend on \(a \). The lack of this kind of circular dependencies makes reasoning easier.

Definition

A logic program \(P \) is **stratified** if \(P \) can be partitioned to

\[P = P_1 \cup \cdots \cup P_n \]

so that for all \(i \in \{1, \ldots, n\} \) and \((a \leftarrow b_1, \ldots, b_m, \not c_1, \ldots, \not c_k) \in P_i \),

1. there is no \(\not a \) in \(P_i \) and
2. there are no occurrences of \(a \) anywhere in \(P_1 \cup \cdots \cup P_{i-1} \).
Introduction

Answer Sets

Normal logic programs

Interpretation and satisfiability

Definitions

Stratification

AnsProlog and ASP Tools

Language and notations

3 AnsProlog and ASP Tools

Language and notations

Programs for Reasoning with Answer Sets

AnsProlog

Propositions are any combination of lowercase letters.

Variables are any combination of letters starting with an uppercase letter.

Write ":-" instead of ←.

Integers can be used and so can arithmetic operations (+, -, *, /, %).

Negation as failure is denoted by not.

Strong negation is denoted by −.

#const n = ... statements can be used to define constants.

The #hide/#show statements can be used to influence which literals are shown in the solution.

Theorem

A stratified program P has exactly one answer set. The unique answer set can be computed in polynomial time.

Example

Our earlier examples with more than one or no answer sets:

\[P_3 = \{ p \leftarrow \neg p \} \]
\[P_4 = \{ p \leftarrow \neg q, \ q \leftarrow \neg p \} \]
AnsProlog: Choice functions

The literal \(\{ b_1; \ldots; b_m \} \)
is true iff any subset of the set \(\{b_1, \ldots, b_m \} \) is true.

Example

Generate all interpretations over the atoms \(a(1), a(2), a(3) \):

\[
\{ a(1); a(2); a(3) \}.
\]

With strong negation:

\[-a(X) :- \text{not } a(X), X=1..3.
\]

\[
\{ a(1..3) \}.
\]

AnsProlog: Choice with cardinality

The literal \(l \{ b_1; \ldots; b_m \} u \)
is true iff at least \(l \) and at most \(u \) atoms (included) are true within the set \(\{b_1, \ldots, b_m \} \).

Example

Generate all interpretations over the atoms \(a(1), a(2), a(3), b(1), b(2) \) that contain exactly 2 true atoms:

\[
2 \{ a(1..3); b(1..2) \} 2.
\]

Generate all interpretations over the atoms \(a(1), a(2), a(3), b(1), b(2), b(3) \) that do not contain exactly 2 or more true atoms for the same predicate:

\[
\{ a(1..3); b(1..3) \}.
\]

\[- 2 \{ a(1..3) \} 3.
\]

\[- 2 \{ b(1..3) \} 3.
\]

AnsProlog: Domains of variables

The domain of a variable must be known in order to avoid “unsafe”-error while the program is grounded.

The domain can be set literal-wise, rule-wise, or program wise.

For limiting the scope within a literal use the syntax:

\[a(X) : \text{dom}(X) \]
or

\[a(X) : X=1..3 \]

Example

\[\text{num}(0..10).\]
\[\text{even}(2*X) :- \text{num}(X), 2*X \leq 10.\]
\[1 \{ a(X) : \text{even}(X) \} 1.\]

#show a/1.

Example: Graph coloring

Example

\[\text{#const } n = 2.\]
\[c(1..n).\]
\[1 \{ \text{color}(X,I) : c(I) \} 1 :- v(X).\]
\[:- \text{color}(X,I), \text{color}(Y,I), e(X,Y), c(I).\]

% Instance
\[v(1..4).\]
\[e(1,2).\]
\[e(1,3).\]
\[e(2,4).\]
\[e(3,4).\]
\[e(2,3).\]

% e(2,3).

#show color/2.
Generate and test

ASP programs are often organized in a “generate-and-test” style: first describe candidate solutions, then rule out possible solutions by stating constraints.

Example

% n-Queens encoding %
#const n = 4.

% Generate possible positions %
1 { q(I,1..n) } 1 :- I = 1..n.

% Rule out attacking positions %
:- q(I1,J), q(I2,J), I1 != I2.
:- q(I,J), q(I+D,J+D), D = 1..n.
:- q(I,J), q(I+D,J-D), D = 1..n.

Generate and test: Further example

Problem: In a graph find cliques of size ≥ n

Example

#const n = 3.

edge(X,Y) :- edge(Y,X).
n {clique(X) : node(X)}.
:- clique(X), clique(Y), node(X), node(Y), X!=Y, not edge(X,Y).

% Instance %
node(1..5).
edge(1,2;4).
edge(2,3;4).
edge(3,4).
edge(4,2;5).

#show clique/1.

AnsProlog: Miscellaneous

The language is even bigger than that! It includes
- Disjunction in the head
- Other operators: #sum,#min,#max,#even,#odd,#avg, ...
- Multi-criteria optimizations
- Heuristic optimizations
- ...

(More on that in the exercises!)

Literature

Literature

- Martín Gebser and Benjamin Kaufmann and André Neumann and Torsten Schaub.
 Conflict-Driven Answer Set Solving.

- Ilkka Niemelä and Patrik Simons
 Efficient Implementation of the Well-founded and Stable Model Semantics.