Principles of Knowledge Representation and Reasoning Nonmonotonic Reasoning

REIBURG

Bernhard Nebel, Felix Lindner, and Thorsten Engesser 14.06. & 19.06.2018

A reasoning task

- If Mary has an essay to write, she will study late in the library.
- If the library is open, she will study late in the library.
- She has an essay to write.

Conclusion?

■ She will study late in the library.

Reasoning tasks like this (suppression task; Byrne, 1989) suggest that humans often do not reason as suggested by classical logics

Introduction

Different forms of reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Literature

FEN EBURG

1 Introduction

- Motivation
- Different forms of reasoning
- Different formalizations

Introduction

Motivation

Different form reasoning

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Literature

Nonmonotonic reasoning

How can we deal with the reasoning task given in the example? We can use a different representation that allows to restate the task as follows:

Nebel, Lindner, Engesser - KR&R

- If Mary has an essay to write, she usually will study late in the library.
- She has an essay to write.
- If the library is not open, she will not study late in the library.
- **...**

14.06. & 19.06.2018

Introductio

Motivation

Different forms oreasoning

formalizations

Complexity

Special Kinds of Defaults

Literature

FREIBURG

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

14.06. & 19.06.2018 Nebel, Lindner, Engesser – KR&R

Nonmonotonic reasoning

- All logics presented so far are monotonic.
- A logic is called monotonic if all (logical) conclusions from a knowledge base remain justified when new information is added to the knowledge base.
- Cognitive studies indicate that everyday reasoning is often nonmonotonic (Stenning & Lambalgen, 2008; Johnson-Laird, 2010, etc.).
- When humans reason they use:
 - rules that may have exceptions: If Mary has an essay to write, she normally will study late in the library.
 - default assumptions: The library is open.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Motivation Different forms

Default Logic

Complexity

Special Kinds

of Defaults

Literature

Motivation

Different

Different forms of

Default Logic

Complexity

Special Kinds

of Defaults

Literature

Defaults in common sense reasoning

- Tweety is a bird like other birds.
- During the summer he stays in Northern Europe, in the winter he stays in Africa.
- Would you expect Tweety to be able to fly?
- How does Tweety get from Northern Europe to Africa?

How would you formalize this in formal logic so that you get the expected answers?

Defaults in knowledge bases

Often we use default assumptions when definite information is not available or when we want to fix a standard value:

- employee(anne)
- employee(bert)
- 3 employee(carla)
- 4 employee(detlef)
- employee(thomas)
- onUnpaidMPaternityLeave(thomas)
- \blacksquare employee(X) $\land \neg$ onUnpaidMPaternityLeave(X) \rightarrow gettingSalary(X)
- Typically: employee(X) $\rightarrow \neg$ onUnpaidMPaternityLeave(X)

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Default Logic

Complexity

of Defaults

Literature

Special Kinds

Motivation

Complexity

of Defaults

Literature

Special Kinds

A formalization ...

- bird(tweety)
- spend-summer(tweety, northern-europe) ∧ spend-winter(tweety, africa)
- $\exists \forall x (bird(x) \rightarrow can-fly(x))$
- far-away(northern-europe, africa)
- $\forall xyz (\text{can-fly}(x) \land \text{far-away}(y,z) \land \text{spend-summer}(x,y) \land$ spend-winter(x, z) \rightarrow flies(x, y, z))
- But: The implication (3) is just a reasonable assumption.
- What if Tweety is an emu?

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

Examples of such reasoning patterns

Closed world assumption: Database of ground atoms. All ground atoms not present are assumed to be false.

Negation as failure: In PROLOG, NOT(P) means "P is not provable" instead of "P is provably false".

Non-strict inheritance: An attribute value is inherited only if there is no more specialized information contradicting the attribute value.

Reasoning about actions: When reasoning about actions, it is usually assumed that a property changes only if it has to change, i.e., properties by default do not change.

14.06. & 19.06.2018 Nebel, Lindner, Engesser – KR&R

Motivation
Different forms of reasoning
Different formalizations
Default Logic
Complexity
Special Kinds

of Defaults

Literature

Approaches to nonmonotonic reasoning

- Consistency-based: Extend classical theory by rules that test whether an assumption is consistent with existing beliefs
- → Nonmonotonic logics such as DL (default logic), NMLP (nonmonotonic logic programming)
- Entailment-based on normal models: Models are ordered by normality. Entailment is determined by considering the most normal models only.
- ⇒ Circumscription, preferential and cumulative logics

Introduction Motivation

Motivation

Different forms of reasoning

Different formalizations

Complexity

Special Kinds

Literature

FREBURG

Default, defeasible, and nonmonotonic reasoning

Default reasoning: Jump to a conclusion if there is no information that contradicts the conclusion.

Defeasible reasoning: Reasoning based on assumptions that can turn out to be wrong: conclusions are defeasible. In particular, default reasoning is defeasible.

Nonmonotonic reasoning: In classical logic, the set of consequences grows monotonically with the set of premises. If reasoning is defeasible, then reasoning becomes nonmonotonic.

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

Motivation

Different forms of

Different forms reasoning

Default Logic

Complexity

Special Kinds

of Defaults

Literature

FEE BURG

NM Logic – Consistency-based

If φ typically implies ψ , φ is given, and it is consistent to assume ψ , then conclude ψ .

- Typically bird(x) implies can-fly(x)
- $\forall x (emu(x) \rightarrow bird(x))$
- $\forall x (\text{emu}(x) \rightarrow \neg \text{can-fly}(x))$
- 4 bird(tweety)
- ⇒ can-fly(tweety)
- 5 ... + emu(tweety)
- ⇒ ¬ can-fly(tweety)

Motivation

Different forms

reasoning

formalizations

Complexity

Special Kinds of Defaults

Literature

BURG

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

13 / 4

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

NM Logic – Normal models

If φ typically implies ψ , then the models satisfying $\varphi \wedge \psi$ should be more normal than those satisfying $\phi \land \neg \psi$.

Similar idea: try to minimize the interpretation of "Abnormality" predicates.

- $\forall x (\text{bird}(x) \land \neg Ab(x) \rightarrow \text{can-fly}(x))$
- $\forall x (emu(x) \rightarrow bird(x))$
- $\forall x (emu(x) \rightarrow \neg can-fly(x))$
- 4 bird(tweety)

Minimize interpretation of Ab:

- ⇒ can-fly(tweety)
- 5 ... + emu(tweety)
- ⇒ Now in all models (incl. the normal ones): ¬ can-fly(tweety)

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Motivation

Different forms of

Different formalizations

Default Logic

Complexity

Special Kinds of Defaults

Literature

Default Logic

Extensions

Normal defaults

Special Kinds of Defaults

Literature

Default proofs

NE

Default Logic – Outline

1 Introduction

2 Default Logic

- Basics
- Extensions
- Properties of extensions
- Normal defaults
- Default proofs
- Decidability

3 Complexity of Default Logic

14.06. & 19.06.2018

4 Special Kinds of Defaults

17 / 48

2 Default Logic **Default Logic** Extensions Basics Normal defaults Extensions Default proofs Properties of extensions Normal defaults Default proofs of Defaults Decidability Literature Nebel, Lindner, Engesser - KR&R 14.06. & 19.06.2018

Reiter's default logic: motivation

- We want to express something like "typically birds fly".
- Add non-logical inference rule

bird(x) : can-fly(x)can-fly(x)

with the intended meaning:

If x is a bird and if it is consistent to assume that x can fly, then conclude that x can fly.

■ Exceptions can be represented as formulae:

 $\forall x (\mathsf{penguin}(x) \to \neg \mathsf{can-fly}(x))$ $\forall x (\text{emu}(x) \rightarrow \neg \text{can-fly}(x))$ $\forall x (\mathsf{kiwi}(x) \to \neg \mathsf{can-fly}(x))$

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

Extensions

Normal defaults Default proofs Decidability

of Defaults

Literature

Formal framework

- FOL with classical provability relation ⊢ and deductive closure: Th(Φ) := { φ | Φ \vdash φ }
- Default rules: $\frac{\alpha : \beta}{\ldots}$
 - α : Prerequisite: must have been derived before rule can be applied.
 - β : Consistency condition: the negation may not be derivable.
 - γ: Consequence: will be concluded.
- A default rule is closed if it does not contain free variables.
- \blacksquare (Closed) default theory: A pair $\langle D, W \rangle$, where D is a countable set of (closed) default rules and W is a countable set of FOL formulae.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Decision problems about extensions in default logic

Existence of extensions: Does a default theory have an extension?

Credulous reasoning: If φ is in at least one extension, φ is a credulous default conclusion.

Skeptical reasoning: If φ is in all extensions, φ is a skeptical default conclusion.

Extensions

Normal defaults Default proofs

Decidability

Special Kinds of Defaults

Literature

Extensions

Normal defaults

Default proofs Decidability

Special Kinds of Defaults

Literature

Extensions of default theories

Default theories extend the theory given by W using the default rules in $D \iff \text{extensions}$. There may be zero, one, or many extensions.

Example

$$W = \{a, \neg b \lor \neg c\}$$
$$D = \left\{\frac{a:b}{b}, \frac{a:c}{c}\right\}$$

One extension contains b, the other contains c.

Intuitively, an extension is a set of beliefs resulting from W and D.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Extensions (informally)

Desirable properties of an extension E of $\langle D, W \rangle$:

- Contains all facts: $W \subseteq E$.
- Is deductively closed: E = Th(E).
- 3 All applicable default rules have been applied: lf
 - $(\frac{\alpha:\beta}{\gamma})\in D$,
 - $\alpha \in E$ $\exists \neg \beta \notin E$

then $\gamma \in E$.

■ Further requirement: Application of default rules must follow in sequence (groundedness).

Extensions

Normal defaults

Default proofs

of Defaults

Literature

Extensions

Normal default Default proofs

of Defaults

Literature

Groundedness

Example

$$W = \emptyset$$

$$D = \left\{ \frac{a \colon b}{b}, \frac{b \colon a}{a} \right\}$$

Question: Should $Th(\{a,b\})$ be an extension?

Answer: No!

a can only be derived if we already have derived b. b can only be derived if we already have derived a.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Extensions

extensions

Normal defaults

Default proofs

Decidability

Special Kinds of Defaults

Literature

How to use this definition?

- The definition does not tell us how to construct an extension.
- However, it tells us how to check whether a set is an extension:
 - Guess a set E.
 - Then construct sets E_i by starting with W.
 - If $E = \bigcup_{i=0}^{\infty} E_i$, then E is an extension of $\langle D, W \rangle$.

Extensions

extensions

Normal defaults Default proofs

Decidability

Special Kinds of Defaults

Literature

Extensions (formally)

Definition

Let $\Delta = \langle D, W \rangle$ be a closed default theory. Let E be any set of closed formulae.

Define:

$$E_0 = W$$

$$E_i = \mathsf{Th}(E_{i-1}) \cup \left\{ \gamma \left| \frac{\alpha \colon \beta}{\gamma} \in D, \alpha \in E_{i-1}, \neg \beta \not\in E \right. \right\}$$

E is called an extension of Δ if

$$E=\bigcup_{i=0}^{\infty}E_{i}.$$

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Extensions

Normal default

Default proofs

of Defaults

Literature

Extensions

Default proofs

of Defaults

Literature

Examples

$$D = \left\{ \frac{a \colon b}{b}, \frac{b \colon a}{a} \right\} \qquad W = \left\{ a \lor b \right\}$$

$$D = \left\{ \frac{a \colon b}{\neg b} \right\}$$

$$D = \left\{ \frac{a \colon b}{\neg b} \right\} \qquad W = \left\{ a \colon b \right\}$$

Nebel, Lindner, Engesser - KR&R

$$D = \left\{ \frac{:a}{a}, \frac{:b}{b}, \frac{:c}{c} \right\}$$

$$W = \{b \rightarrow \neg a \land \neg c\}$$

$$D = \left\{ \frac{:c}{\neg d}, \frac{:d}{\neg e}, \frac{:e}{\neg f} \right\} \qquad W = \emptyset$$

$$D = \left\{ \frac{:c}{\neg d}, \frac{:d}{\neg c} \right\}$$

$$D = \left\{ \frac{a:b}{c}, \frac{a:d}{e} \right\}$$

14.06. & 19.06.2018

$$W = \{a, \neg b \lor \neg a\}$$

Questions, questions, questions ...

- Properties of
- Default proofs
- Special Kinds of Defaults
- Literature

Can one extension be a subset of another one?

■ How are the different extensions related to each other?

■ What can we say about the existence of extensions?

- Are extensions pairwise incompatible (i.e. jointly inconsistent)?
- Can an extension be inconsistent?

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Properties of extensions

Theorem

If E and F are extensions of $\langle D, W \rangle$ such that $E \subseteq F$, then E = F.

Proof sketch.

 $E = \bigcup E_i$ and $F = \bigcup F_i$. Use induction to show $F_i \subseteq E_i$.

Base case i = 0: Trivially $E_0 = F_0 = W$.

Inductive case i > 1: Assume $\gamma \in F_{i+1}$. Two cases:

- $\gamma \in \text{Th}(F_i)$ implies $\gamma \in \text{Th}(E_i)$ (because $F_i \subseteq E_i$ by IH), and therefore $\gamma \in E_{i+1}$.
- Otherwise $\frac{\alpha \colon \beta}{\gamma} \in D$, $\alpha \in F_i$, $\neg \beta \notin F$. However, then we have $\alpha \in E_i$ (because $F_i \subseteq E_i$) and $\neg \beta \notin E$ (because of $E \subseteq F$), i.e., $\gamma \in E_{i+1}$.

Default proofs

Special Kinds of Defaults

Literature

Theorem

If W is inconsistent, there is only one extension.

Properties of extensions: existence

 \blacksquare A closed default theory $\langle D, W \rangle$ has an inconsistent extensions E if and only if W is inconsistent.

Proof idea.

- If W is inconsistent, no default rule is applicable and Th(W) is the only extension (which is inconsistent as well).
- 2 Claim 1 \Longrightarrow the **if**-part. For **only if**: Let W be consistent and assume that there exists an

Then there exists a consistent E_i such that E_{i+1} is inconsistent.

That is, there is at least one applied default α_i : β_i / γ_i with

 $\gamma_i \in E_{i+1} \setminus \mathsf{Th}(E_i), \ \alpha_i \in E_i, \ \mathsf{and} \ \neg \beta_i \notin E.$

But this contradicts the inconsistency of *E*.

inconsistent extension E.

Nebel, Lindner, Engesser - KR&R 14.06. & 19.06.2018

Extensions

of Defaults

Literature

Extensions

Default proofs

of Defaults

Literature

Normal default theories

All defaults in a normal default theory are normal:

$$\frac{\alpha : \beta}{\beta}$$

Theorem

Normal default theories have at least one extension.

Proof sketch.

If W inconsistent, trivial.

Otherwise construct

$$E_0 = W$$

$$E_{i+1} = Th(E_i) \cup T_i \qquad E = \bigcup_{i=0}^{\infty} E_i$$

where T_i is a maximal set s.t. (1) $E_i \cup T_i$ is consistent and (2) if $\beta \in T_i$ then there is $\frac{\alpha: \beta}{\alpha} \in D$ and $\alpha \in E_i$. then there is $\frac{\alpha \colon \beta}{\beta} \in D$ and $\alpha \in E_i$.

14.06. & 19.06.2018 Nebel, Lindner, Engesser – KR&R

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

Normal default theories: extensions are orthogonal

Theorem (Orthogonality)

Let E and F be distinct extensions of a normal default theory. Then $E \cup F$ is inconsistent.

Proof.

Let $E = \bigcup E_i$ and $F = \bigcup F_i$ with

$$E_{i+1} = \mathsf{Th}(E_i) \cup \left\{ \beta \ \middle| \ \frac{\alpha \colon \beta}{\beta} \in D, \alpha \in E_i, \neg \beta \not\in E \ \right\}$$

and the same for F.

Since $E \neq F$, there exists a smallest *i* such that $E_{i+1} \neq F_{i+1}$. This means there exists $\frac{\alpha : \beta}{\beta} \in D$ with $\alpha \in E_i = F_i$, but with, say, $\beta \in E_{i+1}$ and $\beta \notin F_{i+1}$. This is only possible if $\neg \beta \in F$. This means, $\beta \in E$ and $\neg \beta \in F$, i.e., $E \cup F$ is inconsistent.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Extensions

Properties of

Normal defaults

Default proofs Decidability

Special Kinds of Defaults

Literature

Decidability

Theorem

It is not semi-decidable to test whether a formula follows (skeptically or credulously) from a default theory.

Let $\langle D, W \rangle$ be a default theory with $W = \emptyset$ and $D = \left\{ \frac{:\beta}{B} \right\}$ with β an arbitrary closed FOL formula. Clearly, β is in some/all extensions of $\langle D, W \rangle$ if and only if β is satisfiable.

The existence of a semi-decision procedure for default proofs implies that there is a semi-decision procedure for satisfiability in FOL. But this is not possible because FOL validity is semi-decidable and this together with semi-decidability of FOL satisfiability would imply decidability of FOL, which is not the case.

Normal defaults

Special Kinds

of Defaults

Literature

Default proofs

Default proofs in normal default theories

Definition

A default proof of γ in a normal default theory $\langle D, W \rangle$ is a finite sequence of defaults $(\delta_i = \frac{\alpha_i : \beta_i}{\beta_i})_{i=1,...,n}$ in D such that

- $W \cup \{\beta_1, \ldots, \beta_n\} \vdash \gamma$,
- $\bigvee W \cup \{\beta_1, \dots, \beta_n\}$ is consistent, and
- **3** *W* ∪ { $\beta_1, ..., \beta_k$ } $\vdash \alpha_{k+1}$, for $0 \le k \le n-1$.

Theorem

Let $\Delta = \langle D, W \rangle$ be a normal default theory so that W is consistent. Then γ has a default proof in Δ if and only if there exists an extension E of Δ such that $\gamma \in E$.

Test 2 (consistency) in the proof procedure suggests that default provability is not even semi-decidable.

Nebel, Lindner, Engesser - KR&R

3 Complexity of Default Logic

- Propositional DL
- Complexity of DL

Extensions

Normal default

Default proofs

of Defaults

Literature

Complexity

Nebel, Lindner, Engesser - KR&R

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

14.06. & 19.06.2018

Propositional default logic

- Propositional DL is decidable.
- How difficult is reasoning in propositional DL?
- The skeptical default reasoning problem (does φ follow from Δ skeptically: $\Delta \sim \varphi$?) is called PDS, credulous reasoning is called LPDS.
- PDS is coNP-hard: consider $D = \emptyset$. $W = \emptyset$
- LPDS is NP-hard: consider $D = \left\{ \frac{:\beta}{\beta} \right\}, W = \emptyset.$

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Special Kinds

Literature

Π_{2}^{p} -Hardness

Lemma

PDS is Π_{2}^{p} -hard.

Proof sketch.

Reduction from 2- $\forall \exists$ -QBF to PDS: For $\forall \vec{a} \exists \vec{b} \varphi(\vec{a}, \vec{b})$ with $\vec{a} = a_1, \dots, a_n$ and $\vec{b} = b_1, \dots, b_m$ construct $\Delta = \langle D, W \rangle$ with

$$D = \left\{ \frac{: a_i}{a_i}, \frac{: \neg a_i}{\neg a_i}, \frac{: \varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \right\}, \quad W = \emptyset$$

No extension contains both a_i and $\neg a_i$. Then:

The extension contains both
$$a_i$$
 and a_i . Then, a_i iff for all E : $\varphi(\vec{a}, \vec{b}) \in E$ (by $\frac{:\varphi(\vec{a}, \vec{b})}{\varphi(\vec{a}, \vec{b})} \in D$) iff for all consis. $A \subseteq \{a_1, \neg a_1, \dots, a_n, \neg a_n\}$: $A \not\models \neg \varphi(\vec{a}, \vec{b})$ iff $\forall \vec{a} \exists \vec{b} \varphi(\vec{a}, \vec{b})$ is true.

Special Kind

Skeptical reasoning in propositional DL

Lemma

 $PDS \in \Pi_2^p$.

Proof sketch.

We show that the complementary problem UNPDS (is there an extension *E* such that $\varphi \notin E$) is in Σ_2^p .

The algorithm:

- Guess set $T \subseteq D$ of defaults, those that are applied.
- 2 Verify that defaults in T lead to E, using a SAT oracle and the guessed $E := \text{Th}\left(\left\{\gamma\colon \frac{\alpha\colon\beta}{\gamma}\in T\right\}\cup W\right).$
- \rightsquigarrow UNPDS $\in \Sigma_{0}^{p}$.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Special Kinds

Conclusions & remarks

Theorem

PDS is Π_2^p -complete, even for defaults of the form $\frac{\alpha}{\alpha}$.

Theorem

LPDS is Σ_2^p -complete, even for defaults of the form $\frac{\alpha}{\alpha}$

- PDS is "easier" than reasoning in most modal logics.
- General and normal defaults have the same complexity.
- Polynomial special cases cannot be achieved by restricting, for example, to Horn clauses (satisfiability testing in polynomial time).
- It is necessary to restrict the underlying monotonic reasoning problem and the number of extensions.
- Similar results hold for other nonmonotonic logics.

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

4 Special Kinds of Defaults

- Semi-normal defaults
- Open defaults
- Outlook

Nebel, Lindner, Engesser - KR&R

Special Kinds

of Defaults

Open defaults Outlook

Literature

14.06. & 19.06.2018

Semi-normal defaults (1)

Semi-normal defaults are sometimes useful:

Important when one has interacting defaults:

Adult(x): Employed(x)Employed(x)

Student(x): Adult(x)Adult(x)

Student(x): \neg Employed(x)

 $\neg \texttt{Employed}(x)$

For Student (TOM) we get two extensions: one with Employed (TOM) and the other one with \neg Employed (TOM). Since the third rule is "more specific", we may prefer it.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Semi-normal defaults (2)

■ Since being a student is an exception, we could use a semi-normal default to exclude students from employed adults:

Student(x): \neg Employed(x) $\neg \texttt{Employed}(x)$ $Adult(x): Employed(x) \land \neg Student(x)$ Employed(x)Student(x): Adult(x)Adult(x)

- Representing conflict-resolution by semi-normal defaults becomes clumsy when the number of default rules becomes high.
- A scheme for assigning priorities would be more elegant (there are indeed such schemes).

Special Kinds

of Defaults Semi-normal

defaults Outlook

Literature

Our examples included open defaults, but the theory covers

Open defaults (1)

If we have $\frac{\alpha(\vec{x}):\beta(\vec{x})}{\gamma(\vec{x})}$, then the variables should stand for all nameable objects.

only closed defaults.

- Problem: What about objects that have been introduced implicitly, e.g., via formulae such a $\exists x P(x)$.
- Solution by Reiter: Skolemization of all formulae in W and D.
- Interpretation: An open default stands for all the closed defaults resulting from substituting ground terms for the variables.

Special Kinds

of Defaults

Open defaults

Literature

defaults

Outlook

of Defaults

defaults

Literature

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Open defaults (2)

Skolemization can create problems because it preserves satisfiability, but it is not an equivalence transformation.

Example

```
\forall x (\mathtt{Man}(x) \leftrightarrow \neg \mathtt{Woman}(x))
\forall x (\mathtt{Man}(x) \to (\exists y (\mathtt{Spouse}(x, y) \land \mathtt{Woman}(y)) \lor \mathtt{Bachelor}(x)))
Man(TOM)
Spouse(TOM, MARY)
Woman(MARY)
: Man(x)
 Man(x)
```

Skolemization of $\exists y : \dots$ enables concluding Bachelor(TOM)! The reason is that for g(TOM) we get Man(g(TOM)) by default (where *g* is the Skolem function).

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

Special Kinds

of Defaults

Open defaults

Outlook

Literature

Outlook

Although Reiter's definition of DL makes sense, one can come up with a number of variations and extend the investigation ...

- Extensions can be defined differently (e.g., by remembering consistency conditions).
- ... or by removing the groundedness condition.
- Open defaults can be handled differently (more model-theoretically).
- General proof methods for the finite, decidable case
- Applications of default logic:
 - Diagnosis
 - Reasoning about actions

Special Kinds

of Defaults defaults

Open default Outlook

Literature

Open defaults (3)

It is even worse: Logically equivalent theories can have different extensions:

$$W_1 = \{\exists x (P(c,x) \lor Q(c,x))\}$$

$$W_2 = \{\exists x P(c,x) \lor \exists x Q(c,x)\}$$

$$D = \left\{\frac{P(x,y) \lor Q(x,y) \colon R}{R}\right\}$$

 W_1 and W_2 are logically equivalent. However, the Skolemization of W_1 , symbolically $s(W_1)$, is not equivalent with $s(W_2)$. The only extension of $\langle D, W_1 \rangle$ is Th($s(W_1) \cup R$). The only extension of $\langle D, W_2 \rangle$ is Th($s(W_2)$).

Note: Skolemization is not the right method to deal with open defaults in the general case.

14.06. & 19.06.2018

Nebel, Lindner, Engesser - KR&R

of Defaults

defaults

Literature

of Defaults

Literature

Literature

Raymond Reiter.

A logic for default reasoning.

Artificial Intelligence, 13(1):81-132, April 1980.

Georg Gottlob.

Complexity results for nonmonotonic logics.

Journal for Logic and Computation, 2(3), 1992.

Marco Cadoli and Marco Schaerf.

A survey of complexity results for non-monotonic logics.

The Journal of Logic Programming 17: 127-160, 1993.

Gerhard Brewka.

Nonmonotonic Reasoning: Logical Foundations of Commonsense.

Cambridge University Press, Cambridge, UK, 1991.

14.06. & 19.06.2018

14.06. & 19.06.2018 Nebel, Lindner, Engesser - KR&R

Nebel, Lindner, Engesser - KR&R