Decidability & Undecidability

Polynomial Cases
Complexity of \mathcal{ALC} Subsumption
Expressive Power vs. Complexity
The Complexity of Subsumption in TBoxes
Outlook
Literature
Decidability

L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!).

$L_2^=$: L_2 plus equality.
Decidability

L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!).

L_2^\approx: L_2 plus equality.

Theorem

L_2^\approx is decidable.
Decidability

L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!).

$L_2^=$: L_2 plus equality.

Theorem

$L_2^=$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1}.
Decidability

L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!).

L_2^\equiv: L_2 plus equality.

Theorem

L_2^\equiv is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \cap D$, $C \cup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1}.

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions are not a real problem.
Undecidability

- $r \circ s$, $r \sqcap s$, $\neg r$, 1 [Schild 88]

... already shown by Tarski (for relation algebras)
Undecidability

- $r \circ s$, $r \cap s$, $\neg r$, 1 [Schild 88]

 ... already shown by Tarski (for relation algebras)

- $r \circ s$, $r \cdot s = s$, $C \cap D$, $\forall r.C$ [Schmidt-Schauß 89]

 ... This is, in fact, a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm
Polynomial Cases
Decidable, polynomial-time cases

- \mathcal{FL}^- has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
Decidable, polynomial-time cases

- \mathcal{FL}^- has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:
Decidable, polynomial-time cases

- \mathcal{FL}^- has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:
Decidability, polynomial-time cases

- \mathcal{FL}^- has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.

- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

$$ C := A \mid \neg A \mid \top \mid \bot \mid C \sqcap C' \mid \forall r. C \mid (\geq nr) \mid (\leq nr), $$
 $$ r := t \mid r^{-1} $$

and

$$ C := A \mid C \sqcap C' \mid \forall r. C \mid \exists r $$
 $$ r := t \mid r^{-1} \mid r \sqcap r' \mid r \circ r' $$
Complexity of \textit{ALC} Subsumption
How hard is \mathcal{ALC} subsumption?

Proposition

\mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT.

A propositional formula ϕ over the atoms a_i is mapped to $\pi(\phi)$:

- $a_i \mapsto \top$
- $\psi \land \psi' \mapsto \pi(\psi) \land \pi(\psi')$
- $\psi \lor \psi' \mapsto \pi(\psi) \lor \pi(\psi')$
- $\neg \psi \mapsto \neg \pi(\psi)$

Obviously, ϕ is satisfiable iff $\pi(\phi)$ is satisfiable (use structural induction).

If ϕ has a model, construct a model for $\pi(\phi)$ with just one element t standing for the truth of the atoms and the formula. Conversely, if $\pi(\phi)$ satisfiable, pick one element $d \in \pi(\phi)_I$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)_I$.
How hard is \(\text{ALC} \) subsumption?

Proposition

\(\text{ALC} \) subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other.
How hard is \mathcal{ALC} subsumption?

Proposition

\mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT.
Proposition

\(\textbf{ALC} \) subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula \(\varphi \) over the atoms \(a_i \) is mapped to \(\pi(\varphi) \):

\[
\begin{align*}
a_i & \mapsto a_i \\
\psi \land \psi' & \mapsto \pi(\psi) \land \pi(\psi') \\
\psi' \lor \psi & \mapsto \pi(\psi) \lor \pi(\psi') \\
\neg \psi & \mapsto \neg \pi(\psi)
\end{align*}
\]

Obviously, \(\varphi \) is satisfiable iff \(\pi(\varphi) \) is satisfiable (use structural induction).

If \(\varphi \) has a model, construct a model for \(\pi(\varphi) \) with just one element \(t \) standing for the truth of the atoms and the formula. Conversely, if \(\pi(\varphi) \) is satisfiable, pick one element \(d \in \pi(\varphi) \) and set the truth value of atom \(a_i \) according to the fact that \(d \in \pi(a_i) \).
How hard is \mathcal{ALC} subsumption?

Proposition

\mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

- $a_i \mapsto a_i$
- $\psi \land \psi' \mapsto \pi(\psi) \cap \pi(\psi')$
- $\psi' \lor \psi \mapsto \pi(\psi) \cup \pi(\psi')$
- $\neg \psi \mapsto \neg \pi(\psi)$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction).
How hard is \mathcal{ALC} subsumption?

Proposition

\mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

\[
\begin{align*}
a_i & \mapsto a_i \\
\psi \land \psi' & \mapsto \pi(\psi) \cap \pi(\psi') \\
\psi' \lor \psi & \mapsto \pi(\psi) \cup \pi(\psi') \\
\neg \psi & \mapsto \neg \pi(\psi)
\end{align*}
\]

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula.
How hard is \mathcal{ALC} subsumption?

Proposition

\mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

- $a_i \mapsto a_i$
- $\psi \land \psi' \mapsto \pi(\psi) \sqcap \pi(\psi')$
- $\psi' \lor \psi \mapsto \pi(\psi) \sqcup \pi(\psi')$
- $\neg \psi \mapsto \neg \pi(\psi)$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

\[\Box\]
How hard does it get?

Is \mathcal{ALC} unsatisfiability and subsumption also complete for co-NP?
How hard does it get?

- Is \mathcal{ALC} unsatisfiability and subsumption also complete for co-NP?
- Unlikely – since models of a single concept description can already become exponentially large!
How hard does it get?

- Is \mathcal{ALC} unsatisfiability and subsumption also complete for co-NP?
- Unlikely – since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisfiability in the modal logic \mathcal{K}.
- Satisfiability and unsatisfiability in \mathcal{K} is PSPACE-complete.
Reduction from K-satisfiability

Lemma (Lower bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.
Reduction from K-satisfiability

Lemma (Lower bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all $PSPACE$-hard.

Proof.

Extend the reduction given in the last proof by the following two rules — assuming that b is a fixed role name:

\[
\begin{align*}
\Box \psi & \leftrightarrow \forall b. \pi(\psi) \\
\Diamond \psi & \leftrightarrow \exists b. \pi(\psi)
\end{align*}
\]
Lemma (Lower bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

$$
\Box \psi \leftrightarrow \forall b. \pi(\psi)
$$

$$
\Diamond \psi \leftrightarrow \exists b. \pi(\psi)
$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction).
Reduction from K-satisfiability

Lemma (Lower bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all $PSPACE$-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

$$\square \psi \mapsto \forall b . \pi(\psi)$$
$$\Diamond \psi \mapsto \exists b . \pi(\psi)$$

Again, obviously, ϕ is satisfiable iff $\pi(\phi)$ is satisfiable (again using structural induction). If ϕ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w.

December 7, 2015 Nebel, Lindner, Engesser – KR&R
Reduction from K-satisfiability

Lemma (Lower bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

\[
\square \psi \mapsto \forall b. \pi(\psi)
\]

\[
\Diamond \psi \mapsto \exists b. \pi(\psi)
\]

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.
Lemma (Upper Bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC}. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Lemma (Upper Bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC}.
Lemma (Upper Bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC}. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time.
Computational complexity of \mathcal{ALC} subsumption

Lemma (Upper Bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in \textit{PSPACE}.

Proof.

This follows from the tableau algorithm for \mathcal{ALC}. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in \textit{PSPACE}.
Computational complexity of \mathcal{ALC} subsumption

Lemma (Upper Bound for \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC}. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

\mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-complete.
Further consequences of the reducibility of K to ALC

In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
Further consequences of the reducibility of K to ALC

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - The multi-modal logic K_n has n different Box operators \Box_i (for n different agents).
 - ALC (wrt. TBox reasoning) is a notational variant of K_n. [Schild, IJCAI-91]
Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?

 \Rightarrow The multi-modal logic K_n has n different Box operators \square_i (for n different agents).

 \Rightarrow \mathcal{ALC} (wrt. TBox reasoning) is a notational variant of K_n. [Schild, IJCAI-91]

- Are there other modal logics that correspond to other descriptions logics?
Further consequences of the reducibility of K to ALC

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - The multi-modal logic K_n has n different Box operators \Box_i (for n different agents).
 - ALC (wrt. TBox reasoning) is a notational variant of K_n. [Schild, IJCAI-91]

- Are there other modal logics that correspond to other description logics?
 - Propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - \Rightarrow The multi-modal logic K_n has n different Box operators \Box_i (for n different agents).
 - \Rightarrow \mathcal{ALC} (wrt. TBox reasoning) is a notational variant of K_n.
 [Schild, IJCAI-91]

- Are there other modal logics that correspond to other descriptions logics?
 - \Rightarrow propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...

- \Rightarrow DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.
- \Rightarrow Algorithms and complexity results can be borrowed. Works also the other way around.
Expressive Power vs. Complexity
Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}.

There are three approaches to this problem:

1. Use only small description logics with complete inference algorithms.
2. Use expressive description logics, but employ incomplete inference algorithms.
3. Use expressive description logics with complete inference algorithms.

For a long time, only options 1 and 2 were studied. Meanwhile, most researchers concentrate on option 3!
Expressive power vs. complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}.

- Does it make sense to use languages such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?
Expressive power vs. complexity

Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}.

Does it make sense to use languages such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?

There are three approaches to this problem:

1. Use only small description logics with complete inference algorithms.
Expressive power vs. complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}.
- Does it make sense to use languages such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 1. Use only small description logics with complete inference algorithms.
 2. Use expressive description logics, but employ incomplete inference algorithms.
Expressive power vs. complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}.

- Does it make sense to use languages such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?

- There are three approaches to this problem:
 1. Use only small description logics with complete inference algorithms.
 2. Use expressive description logics, but employ incomplete inference algorithms.
 3. Use expressive description logics with complete inference algorithms.
Expressive power vs. complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., $\mathcal{FL}^−$ vs. \mathcal{ALC}.
- Does it make sense to use languages such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 1. Use only small description logics with complete inference algorithms.
 2. Use expressive description logics, but employ incomplete inference algorithms.
 3. Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!
The Complexity of Subsumption in TBoxes
Is subsumption in the empty TBox enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
Is subsumption in the empty TBox enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
Is subsumption in the empty TBox enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time …
- In the following example unfolding leads to an exponential blowup:

 \[
 C_1 = \forall r.C_0 \sqcap \forall s.C_0
 \]
 \[
 C_2 = \forall r.C_1 \sqcap \forall s.C_1
 \]
 \[
 \vdots
 \]
 \[
 C_n = \forall r.C_{n-1} \sqcap \forall s.C_{n-1}
 \]

 Unfolding \(C_n\) leads to a concept description with a size \(\Omega(2^n)\). Is it possible to avoid this blowup? Can we avoid exponential preprocessing?
Is subsumption in the empty TBox enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time …
- In the following example unfolding leads to an exponential blowup:

\[C_1 = \forall r.C_0 \sqcap \forall s.C_0 \]
\[C_2 = \forall r.C_1 \sqcap \forall s.C_1 \]
\[\vdots \]
\[C_n = \forall r.C_{n-1} \sqcap \forall s.C_{n-1} \]

- Unfolding \(C_n \) leads to a concept description with a size \(\Omega(2^n) \).
Is subsumption in the empty TBox enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time …
- In the following example unfolding leads to an exponential blowup:
 \[
 C_1 = \forall r.C_0 \land \forall s.C_0 \\
 C_2 = \forall r.C_1 \land \forall s.C_1 \\
 \vdots \\
 C_n = \forall r.C_{n-1} \land \forall s.C_{n-1}
 \]
- Unfolding \(C_n \) leads to a concept description with a size \(\Omega(2^n) \).
- Is it possible to avoid this blowup? Can we avoid exponential preprocessing?
Question: Can we decide in polynomial time TBox subsumption for a description logic such as \mathcal{FL}^-, for which concept subsumption in the empty TBox can be decided in polynomial time?
TBox subsumption for small languages

- **Question**: Can we decide in polynomial time TBox subsumption for a description logic such as \mathcal{FL}^-, for which concept subsumption in the empty TBox can be decided in polynomial time?

- Let us consider $\mathcal{FL}_0 : C \sqcap D, \forall r.C$ with terminological axioms.
TBox subsumption for small languages

- **Question**: Can we decide in polynomial time TBox subsumption for a description logic such as \mathcal{FL}^-, for which concept subsumption in the empty TBox can be decided in polynomial time?

- Let us consider $\mathcal{FL}_0 : C \sqcap D, \forall r.C$ with terminological axioms.

- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
Question: Can we decide in polynomial time TBox subsumption for a description logic such as \mathcal{FL}^-, for which concept subsumption in the empty TBox can be decided in polynomial time?

Let us consider $\mathcal{FL}_0 : C \sqcap D, \forall r.C$ with terminological axioms.

Subsumption without a TBox can be done easily, using a structural subsumption algorithm.

Unfolding + structural subsumption gives us an exponential algorithm.
Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch. We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFA.

We transform a cycle-free NDFA to a \mathcal{FL}_0-terminology with the mapping π as follows:

- Automaton A maps to terminology T_A
- State q maps to concept name q
- Terminal state q_f maps to concept name q_f
- Input symbol r maps to role name r
- r-transition from q to q' maps to $\exists r : q' \sqsubseteq \ldots$
Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFAs.
Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0-terminology with the mapping π as follows:

- Automaton $A \mapsto$ terminology \mathcal{T}_A
- State $q \mapsto$ concept name q
- Terminal state $q_f \mapsto$ concept name q_f
- Input symbol $r \mapsto$ role name r

r-transition from q to $q' \mapsto q = \ldots \sqcap \forall r : q' \sqcap \ldots$
“Proof” by example

In general, we have:

$L(q) \subseteq L(q')$ iff $q' \sqsubseteq T q$, from which the correctness of the reduction and the complexity result follows.
“Proof” by example

In general, we have: \(\mathcal{L}(q) \subseteq \mathcal{L}(q') \) iff \(q' \sqsubseteq_T q \)

\[
\begin{align*}
q_1 & \equiv \forall a.q_3 \sqcap \forall a.q_2 \\
q_2 & \equiv \forall a.q_3 \sqcap \forall a.q_5 \\
q_3 & \equiv \forall b.q_4 \\
q_4 & \equiv \forall b.q_f \sqcap \forall c.q_f \\
q_5 & \equiv \forall b.q_6 \\
q_6 & \equiv \forall b.q_f \\
q_1 & \sqsubseteq_T q_2 \text{ and } \mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)
\end{align*}
\]
“Proof” by example

In general, we have: \(\mathcal{L}(q) \subseteq \mathcal{L}(q') \) iff \(q' \sqsubseteq_T q \), from which the correctness of the reduction and the complexity result follows.
What does this complexity result mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
What does this complexity result mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
What does this complexity result mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice.
- Pathological situations do not happen very often.
What does this complexity result mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice.
- **Pathological situations** do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
What does this complexity result mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding …
What does this complexity result mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice.
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding …
- Similarly, also for \mathcal{ALC} concept descriptions, one notices that they are usually very well behaved.
Outlook
Description logics have a long history (Tarski’s relation algebras and Brachman’s KL-ONE).
Outlook

- Description logics have a long history (Tarski’s relation algebras and Brachman’s KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
Outlook

- Description logics have a long history (Tarski’s relation algebras and Brachman’s KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
Description logics have a long history (Tarski’s relation algebras and Brachman’s KL-ONE).

Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.

Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.

Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
Outlook

- Description logics have a long history (Tarski’s relation algebras and Brachman’s KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).
Literature I

Franz Baader.

Bernhard Nebel and Gert Smolka.
Attributive description formalisms ...and the rest of the world.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.
Tractable concept languages.
Literature II

Klaus Schild.
A correspondence theory for terminological logics: Preliminary report.

Reasoning with Individuals for the Description Logic SHIQ.

B. Nebel.
Terminological Reasoning is Inherently Intractable,