Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics IV: Description Logics – Algorithms

Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 30, 2015

UNI FREIBURG

Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics IV: Description Logics – Algorithms

Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 30, 2015

UNI FREIBURG

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Literature

Motivation

November 30, 2015

Nebel, Lindner, Engesser - KR&R

Reasoning problems:

Satisfiability or subsumption of concept descriptions

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reasoning problems:

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes

Motivation

Structural Subsumption Algorithms

Tableau Subsumptior Method

Reasoning problems:

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes

Solving techniques presented in this chapter:

Structural subsumption algorithms

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reasoning problems:

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes

Solving techniques presented in this chapter:

- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reasoning problems:

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Solving techniques presented in this chapter:
 - Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
 - Tableau algorithms
 - Similar to modal tableau methods
 - Often the method of choice

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau Subsumption Method

Literature

Structural Subsumption Algorithms

Structural subsumption algorithms

In what follows we consider the rather small logic \mathcal{FL}^- :

- $\square C \sqcap D$
- ∀r.C
- \blacksquare $\exists r$ (simple existential quantification)

Motivation

Structural Subsumption Algorithms

Idea

Example Algorithm Soundness Completeness Generalizations ABox Reasoning

Tableau Subsumption Method

Structural subsumption algorithms

In what follows we consider the rather small logic \mathcal{FL}^- :

- $\square C \sqcap D$
- ∀r.C
- $\exists r$ (simple existential quantification)
- To solve the subsumption problem for this logic we apply the following idea:
 - In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

 $\forall r. C \sqcap \forall r. D \rightarrow \forall r. (C \sqcap D).$

 Compare all conjuncts with each other.
 For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one.

November 30, 2015

Nebel, Lindner, Engesser – KR&R

Motivation

Structural Subsumption Algorithms

Idea

Example Algorithm Soundness Completeness Generalizations ABox Reasoning

Tableau Subsumptior Method

Literature

Example

 $D = \text{Human} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child.Human} \sqcap \\ \forall \text{has-child.} \exists \text{has-child} \\ C = \text{Human} \sqcap \text{Female} \sqcap \exists \text{has-child} \sqcap \\ \forall \text{has-child.(Human} \sqcap \text{Female} \sqcap \exists \text{has-child}) \\ \end{cases}$

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Completeness

Concretione

ABox Reasoning

Tableau Subsumption Method

Literature

Nebel, Lindner, Engesser - KR&R

Example

 $D = Human \sqcap \exists has-child \sqcap \forall has-child.Human \sqcap \forall has-child.dhas-child$ $C = Human \sqcap Female \sqcap \exists has-child \sqcap \forall has-child.(Human \sqcap Female \sqcap \exists has-child)$

Check: $C \sqsubseteq D$

Collect value restrictions in D: ...∀has-child.(Human □ ∃has-child)

Motivation

Structural Subsumption Algorithms

Idea

Example

Algorithm

Soundness

Completeness

ABox Reasoning

Tableau Subsumption Method

Example

 $D = \operatorname{Human} \sqcap \exists has-child \sqcap \forall has-child.Human \sqcap$

 $\forall \texttt{has-child}. \exists \texttt{has-child}$

 $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$

 $\forall has-child.(Human \sqcap Female \sqcap \exists has-child)$

Check: $C \sqsubseteq D$

Collect value restrictions in *D*:

...∀has-child.(Human □ ∃has-child)

2 Compare:

- 1 For Human in D, we have Human in C.
- **2** For \exists has-child in *D*, we have \exists has-child in *C*.
- 3 For ∀has-child.(...) in D, we have Human and ∃has-child in C.

Motivation

Structural Subsumption Algorithms

Idea

Example

Algorithm Soundness

Completeness

ABox Reasoning

Tableau Subsumption Method

Literature

BURG

Example

 $D = \operatorname{Human} \sqcap \exists \operatorname{has-child} \sqcap \forall \operatorname{has-child}. \operatorname{Human} \sqcap$

 $\forall \texttt{has-child}. \exists \texttt{has-child}$

 $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$

 $\forall has-child.(Human \sqcap Female \sqcap \exists has-child)$

Check: $C \sqsubseteq D$

Collect value restrictions in *D*:

 $\dots \forall has-child.(Human \sqcap \exists has-child)$

- 2 Compare:
 - 1 For Human in D, we have Human in C.
 - 2 For \exists has-child in *D*, we have \exists has-child in *C*.
 - 3 For ∀has-child.(...) in *D*, we have Human and ∃has-child in *C*.
- \rightsquigarrow *C* is subsumed by *D* !

Motivation

Structural Subsumption Algorithms

Idea

Example

Soundness

Completeness

Generalizations ABox Reasoning

Tableau Subsumptior Method

SUB(C,D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

$$C = \Box A_i \Box \Box \exists r_j \Box \Box \forall r_k : C_k$$

$$D = \bigcap B_{I} \cap \bigcap \exists s_{m} \cap \bigcap \forall s_{n} : D_{n}$$

Motivation

Structural Subsumption Algorithms

Idea

Example

Algorithm

Soundness

Completeness

ABox Reasoning

Tableau Subsumption Method

SUB(C,D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

 $C = \Box A_i \Box \Box \exists r_j \Box \Box \forall r_k : C_k$ $D = \Box B_l \Box \Box \exists s_m \Box \Box \forall s_n : D_n$

2 For each B_l in D, is there an A_i in C with $A_i = B_l$?

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness

Completeness

ABox Reasoning

Tableau Subsumptior Method

Literature

November 30, 2015

Nebel, Lindner, Engesser - KR&R

SUB(C,D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

 $C = \Box A_i \Box \Box \exists r_j \Box \Box \forall r_k : C_k$ $D = \Box B_l \Box \Box \exists s_m \Box \Box \forall s_n : D_n$

- 2 For each B_l in D, is there an A_i in C with $A_i = B_l$?
- 3 For each $\exists s_m$ in *D*, is there an $\exists r_i$ in *C* with $s_m = r_i$?

Motivation

Structural Subsumption Algorithms

dea

Example

Algorithm

Soundness

Generalizations

ABox Reasoning

Tableau Subsumption Method

SUB(C,D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

 $C = \Box A_i \Box \Box \exists r_j \Box \Box \forall r_k : C_k$ $D = \Box B_l \Box \Box \exists s_m \Box \Box \forall s_n : D_n$

- 2 For each B_i in D, is there an A_i in C with $A_i = B_i$?
- **3** For each $\exists s_m$ in *D*, is there an $\exists r_j$ in *C* with $s_m = r_j$?
- 4 For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $s_n = r_k$ and $C_k \sqsubseteq D_n$ (i.e., check SUB(C_k, D_n))?

Motivation

Structural Subsumption Algorithms

dea

Example

Algorithm

Soundness

Generalizations ABox Reasoning

Tableau Subsumption

Literature

SUB(C,D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

 $C = \Box A_i \Box \Box \exists r_j \Box \Box \forall r_k : C_k$ $D = \Box B_l \Box \Box \exists s_m \Box \Box \forall s_n : D_n$

- **2** For each B_i in D, is there an A_i in C with $A_i = B_i$?
- 3 For each $\exists s_m$ in *D*, is there an $\exists r_j$ in *C* with $s_m = r_j$?
- 4 For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $s_n = r_k$ and $C_k \sqsubseteq D_n$ (i.e., check SUB(C_k, D_n))?
- \sim *C* \sqsubseteq *D* iff all questions are answered positively.

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness

Generalizations ABox Reasoning

Tableau Subsumption Method

Literature

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

Commutativity and associativity are trivial

Motivation

Structural Subsumption Algorithms

Idea Euromoli

Algorithm

Soundness

Completeness Generalizations ABox Reasoning

Tableau Subsumption Method

Literature

UNI FREIBURG

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

- Commutativity and associativity are trivial
- 2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Motivation

Structural Subsumption Algorithms

dea

Example

Algorithm

Soundness

Completeness Generalizations

ABox Reasoning

Tableau Subsumption Method

Literature

EIBURG

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

- 1 Commutativity and associativity are trivial
- 2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$.

Motivation

Structural Subsumption Algorithms

dea

Example

Algorithm

Soundness

Completeness Generalizations

ABox Reasoning

Tableau Subsumption Method

Literature

IBURG

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

- Commutativity and associativity are trivial
- 2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. If there is an $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$.

Motivation

Structural Subsumption Algorithms

dea

Algorithm

Algoniinn

Soundness

Generalizations ABox Reasoning

Tableau Subsumptior Method

Literature

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

Commutativity and associativity are trivial

2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. If there is an $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$. Since *e* is arbitrary, we have $d \in (\forall r.C)^{\mathcal{I}}$ and $d \in (\forall r.D)^{\mathcal{I}}$,

Motivation

Structural Subsumption Algorithms

dea

Example

Algorithm

Soundness

Generalizations ABox Reasoning

Tableau Subsumptior Method

Literature

BURG

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

Commutativity and associativity are trivial

2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. If there is an $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$. Since e is arbitrary, we have $d \in (\forall r.C)^{\mathcal{I}}$ and $d \in (\forall r.D)^{\mathcal{I}}$, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$.

Motivation

Structural Subsumption Algorithms

dea

Algorithm

Algorithm

Soundness

Generalizations ABox Reasoning

Tableau Subsumptior Method

Literature

BURG

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

Commutativity and associativity are trivial

2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. If there is an $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$. Since e is arbitrary, we have $d \in (\forall r.C)^{\mathcal{I}}$ and $d \in (\forall r.D)^{\mathcal{I}}$, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. The other direction is similar.

Motivation

Structural Subsumption Algorithms

dea

Algorithm

Soundness

Completeness Generalizations ABox Reasoning

Tableau Subsumption Method

Literature

BURG

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

1 Commutativity and associativity are trivial

2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. If there is an $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$. Since *e* is arbitrary, we have $d \in (\forall r.C)^{\mathcal{I}}$ and $d \in (\forall r.D)^{\mathcal{I}}$, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. The other direction is similar.

Steps (2+3+4): Induction on the nesting depth of \forall -expressions.

Motivation

Structural Subsumption Algorithms

dea

Example

Algorithm

Soundness

Completeness Generalizations ABox Reasoning

Tableau Subsumptior

Completeness

Theorem (Completeness)

 $C \sqsubseteq D \Rightarrow SUB(C,D).$

Motivation

Structural Subsumption Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations ABox Reasoning

Tableau Subsumption Method

Completeness

Theorem (Completeness)

 $C \sqsubseteq D \Rightarrow SUB(C,D).$

Proof idea.

One shows the contrapositive:

 $\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$

Motivation

Structural Subsumption Algorithms

ldea

Example

- - -

Completeness

ABox Reasoning

Tableau Subsumption Method

Completeness

Theorem (Completeness)

 $C \sqsubseteq D \Rightarrow SUB(C,D).$

Proof idea.

One shows the contrapositive:

 $\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element *d* such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$.

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness

Completeness

ABox Reasoning

Tableau Subsumption Method

Literature

BURG

November 30, 2015

Nebel, Lindner, Engesser - KR&R

Extensions of \mathcal{FL}^- by

 $\blacksquare \neg A$ (atomic negation),

Motivation

Structural Subsumption Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations ABox Reasoning

Tableau Subsumption Method

Literature

November 30, 2015

$\mathbf{\Gamma}$ is a loss of $\mathbf{T} \mathbf{A} = \mathbf{b}$	Motivation
Extensions of \mathcal{FL}^- by	Structural
■ $\neg A$ (atomic negation),	Subsumptio Algorithms
$= (\langle x, y, y \rangle) (\langle x, y, y \rangle) (z = y d y d y d y d y d y d y d y d y d y$	Idea
\blacksquare (\leq nr), (\geq nr) (cardinality restrictions),	Example
	Algorithm
	Soundness
	Completeness
	Generalizations
	ABox Reasonin
	Tableau
	Subsumptio
	Method

	Motivation
Extensions of \mathcal{FL}^- by	Structural
■ $\neg A$ (atomic negation),	Subsumption Algorithms
$\blacksquare (\leq nr), (\geq nr) \text{ (cardinality restrictions)},$	ldea Example Algorithm
$r \circ s$ (role composition)	Soundness Completeness
do not lead to any problems.	Generalizations ABox Reasoning
	Tableau Subsumption Method
	Literature

	Motivation
Extensions of \mathcal{FL}^- by	Structural
■ $\neg A$ (atomic negation),	Subsumption Algorithms
$\blacksquare (\leq nr), (\geq nr) (cardinality restrictions),$	ldea. Example
$r \circ s$ (role composition)	Algorithm Soundness Completeness
do not lead to any problems.	Generalizations ABox Reasoning
However: If we use full existential restrictions, then it is very unlikely that we can come up with a simple structural	Tableau Subsumption Method
subsumption algorithm – having the same flavor as the one above.	Literature

Extensions of \mathcal{FL}^- by	
■ $\neg A$ (atomic negation),	
$\blacksquare (\leq nr), (\geq nr) \text{ (cardinality restrictions)},$	
<i>r</i> ∘ <i>s</i> (role composition)	
do not lead to any problems.	
However: If we use full existential restrictions, then it is very unlikely that we can come up with a simple structural	
subsumption algorithm – having the same flavor as the one above.	
More precisely: There is (most probably) no algorithm that uses	

polynomially many reorderings and simplifications and allows for a simple structural comparison. Motivation Structural Subsumption Algorithms

> Generalizations ABox Reasoning

Literature

VI EIBURG

Generalizing the algorithm

Extensions of \mathcal{FL}^- by
■ $\neg A$ (atomic negation),
$\blacksquare (\leq nr), (\geq nr) \text{ (cardinality restrictions)},$
■ $r \circ s$ (role composition)
do not lead to any problems.
However: If we use full existential restrictions, then it is very unlikely that we can come up with a simple structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison.

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

November 30, 2015

13/34

Generalizations ABox Reasoning

Literature

BURG

_

ABox reasoning

Idea: Abstraction + classification

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau Subsumption Method

Literature

November 30, 2015

Nebel, Lindner, Engesser - KR&R

Idea: Abstraction + classification

Complete ABox by propagating value restrictions to role fillers.

Motivation

Structural Subsumption Algorithms

Idea

Example

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau Subsumption Method

Idea: Abstraction + classification

- Complete ABox by propagating value restrictions to role fillers.
- Compute for each object its most specialized concepts.

Motivation

Structural Subsumption Algorithms

ldea.

Example

Algorithm

Soundness

Completeness

ABox Reasoning

Tableau

Subsumption Method

Idea: Abstraction + classification

- Complete ABox by propagating value restrictions to role fillers.
- Compute for each object its most specialized concepts.
- These can then be handled using the ordinary subsumption algorithm.

Motivation

Structural Subsumption Algorithms

ldea.

Example

Algorithm

Soundness

Completeness

ABox Reasoning

Tableau Subsumption Method

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Literature

Tableau Subsumption Method

Tableau method

 $\text{Logic }\mathcal{ALC}\text{:}$

- $\square C \sqcap D$
- C⊔D
- □ ¬C
- ∀r.C
- ∃*r*.*C*

Idea: Decide (un-)satisfiability of a concept description *C* by trying to systematically construct a model for *C*. If that is successful, *C* is satisfiable. Otherwise, *C* is unsatisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability Model Construction Equivalences & NWI Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity

Example: Subsumption in a TBox

Example

TBox:

```
Hermaphrodite = Male \sqcap Female
```

```
Parent-of-sons-and-daughters =
```

```
\existshas-child.Male\sqcap \existshas-child.Female
```

 $Parent-of-hermaphrodite = \exists has-child.Hermaphrodite$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability Model Construction Equivalences & NNF Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity ABox Reasoning

Literature

BURG

18/34

Example: Subsumption in a TBox

Example

TBox:

```
\texttt{Hermaphrodite} = \texttt{Male} \sqcap \texttt{Female}
```

```
Parent-of-sons-and-daughters =
```

 \exists has-child.Male $\sqcap \exists$ has-child.Female

 $Parent-of-hermaphrodite = \exists has-child.Hermaphrodite$

Query:

```
\begin{array}{l} \texttt{Parent-of-sons-and-daughters} \sqsubseteq_{\mathcal{T}} \\ \texttt{Parent-of-hermaphrodites} \end{array}
```

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Heauctons: Uniciding & Unastisfiability Model Construction Equivalences & NNE Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity ABox Reasoning

Literature

UNI FREIBURG

18/34

1 Unfolding:

 $\exists has-child.Male \sqcap \exists has-child.Female$

 $\sqsubseteq \exists has-child.(Male \sqcap Female)$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Unfolding: ∃has-child.Male□∃has-child.Female ⊑∃has-child.(Male□Female) Reduction to unsatisfiability: Is the concept ∃has-child.Male□∃has-child.Female□ ¬∃has-child.(Male□Female) unsatisfiable?

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

1 Unfolding:

∃has-child.Male□∃has-child.Female

 $\sqsubseteq \exists has-child.(Male \sqcap Female)$

Reduction to unsatisfiability: Is the concept ∃has-child.Male□∃has-child.Female□ ¬∃has-child.(Male□Female) unsatisfiable?

3 Negation normal form (move negations inside): ∃has-child.Male□∃has-child.Female□ ∀has-child.(¬Male□¬Female)

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

1 Unfolding:

∃has-child.Male□∃has-child.Female

 $\sqsubseteq \exists has-child.(Male \sqcap Female)$

2 Reduction to unsatisfiability: Is the concept ∃has-child.Male□∃has-child.Female□ ¬∃has-child.(Male□Female) unsatisfiable?

- Solution Negation normal form (move negations inside): ∃has-child.Male□∃has-child.Female□ ∀has-child.(¬Male□¬Female)
- 4 Try to construct a model

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Constraint Systems

Transforming

Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Model construction (1)

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Model construction (1)

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

2 This implies that x is in the interpretation of all conjuncts:

$$egin{aligned} &x\in (\exists \texttt{has-child.Male})^\mathcal{I}\ &x\in (\exists \texttt{has-child.Female})^\mathcal{I}\ &x\in (\forall \texttt{has-child.}(\neg \texttt{Male} \sqcup \neg \texttt{Female}))^\mathcal{I} \end{aligned}$$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity

Model construction (1)

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

2 This implies that x is in the interpretation of all conjuncts:

$$egin{aligned} & x \in (\exists \texttt{has-child.Male})^\mathcal{I} \ & x \in (\exists \texttt{has-child.Female})^\mathcal{I} \ & x \in (\forall \texttt{has-child.}(\neg \texttt{Male} \sqcup \neg \texttt{Female}))^\mathcal{I} \end{aligned}$$

3 This implies that there should be objects y and z such that $(x,y) \in has-child^{\mathcal{I}}, (x,z) \in has-child^{\mathcal{I}}, y \in Male^{\mathcal{I}}$ and $z \in Female^{\mathcal{I}}$, and ...

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions: Unfolding & Unsatisfiability

Model Construction

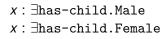
Equivalences & NNF Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity

Literature

November 30, 2015

20/34

Model construction (2)





Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNR Constraint Systems Transforming

Invariances

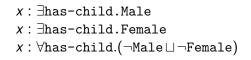
Soundness and

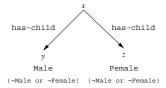
Completeness

Space Complexity

ABox Reasoning

Model construction (3)





Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNR Constraint Systems Transforming Constraint Systems

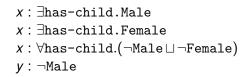
Coundanae and

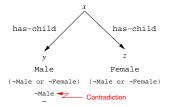
Completeness

Space Complexity

ABox Reasoning

Model construction (4)





Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions:

Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF Constraint Systems Transforming Constraint Systems

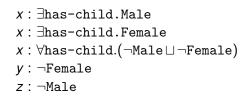
Invariances

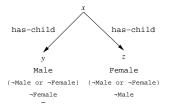
Soundness and

Completeness

ABoy Reasoning

Model construction (5)





Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions: Unfolding & Unsatisfiability

Model Construction

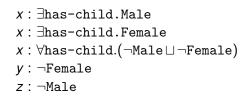
Equivalences & NNF Constraint Systems Transforming Constraint Systems Invariances

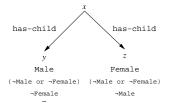
Soundness and

Space Complexity

ABox Reasoning

Model construction (5)





Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF Constraint Systems Transforming Constraint Systems

Soundness and

Completeness

Space Complexity

ABox Reasoning

Literature

~ Model constructed!

November 30, 2015

Nebel, Lindner, Engesser - KR&R

We write: $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$. Now we have the following equivalences:

$$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg (C \sqcup D) \equiv \neg C \sqcap \neg D$$
$$\neg (\forall r.C) \equiv \exists r. \neg C \qquad \neg (\exists r.C) \equiv \forall r. \neg C$$
$$\neg \neg C \equiv C$$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

We write: $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$. Now we have the following equivalences:

$$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg (C \sqcup D) \equiv \neg C \sqcap \neg D$$
$$\neg (\forall r.C) \equiv \exists r. \neg C \qquad \neg (\exists r.C) \equiv \forall r. \neg C$$
$$\neg \neg C \equiv C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF).

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

We write: $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$. Now we have the following equivalences:

 $\neg(C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg(C \sqcup D) \equiv \neg C \sqcap \neg D$ $\neg(\forall r.C) \equiv \exists r. \neg C \qquad \neg(\exists r.C) \equiv \forall r. \neg C$ $\neg \neg C \equiv C$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF).

Theorem (NNF)

The negation normal form of an \mathcal{ALC} concept can be computed in polynomial time.

November 30, 2015

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

Literature

25/34

Tableau method (2): Constraint systems

A constraint is a syntactical object of the form:

x: C or xry,

where C is a concept description in NNF, r is a role name, and x and y are variable names.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

A constraint is a syntactical object of the form:

x: C or xry,

where C is a concept description in NNF, r is a role name, and x and y are variable names.

Let \mathcal{I} be an interpretation with universe \mathcal{D} . An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} .

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

A constraint is a syntactical object of the form:

x: C or xry,

where C is a concept description in NNF, r is a role name, and x and v are variable names.

Let \mathcal{I} be an interpretation with universe \mathcal{D} . An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} .

A constraint x: C (xry) is satisfied by an \mathcal{I} -assignment α if $\alpha(x) \in C^{\mathcal{I}}$ (resp. $(\alpha(x), \alpha(y)) \in r^{\mathcal{I}}$).

Algorithms

Model Construction

Constraint Systems

Literature

26/34

Tableau method (3): Constraint systems

Definition

A constraint system *S* is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies *S* if α satisfies each constraint in *S*. *S* is satisfiable if there exist \mathcal{I} and α such that α satisfies *S*.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

Tableau method (3): Constraint systems

Definition

A constraint system *S* is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies *S* if α satisfies each constraint in *S*. *S* is satisfiable if there exist \mathcal{I} and α such that α satisfies *S*.

Theorem

An ALC concept C in NNF is satisfiable if and only if the system $\{x: C\}$ is satisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Transformation rules:

■ $S \rightarrow_{\Box} \{x : C_1, x : C_2\} \cup S$ if $(x : C_1 \sqcap C_2) \in S$ and either $(x : C_1)$ or $(x : C_2)$ or both are not in *S*.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Transformation rules:

- $S \rightarrow_{\Box} \{x: C_1, x: C_2\} \cup S$ if $(x: C_1 \sqcap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in *S*.
- 2 $S \rightarrow \sqcup \{x : D\} \cup S$ if $(x : C_1 \sqcup C_2) \in S$ and neither $(x : C_1) \in S$ nor $(x : C_2) \in S$ and $D = C_1$ or $D = C_2$.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Transformation rules:

- $S \rightarrow_{\Box} \{x: C_1, x: C_2\} \cup S$ if $(x: C_1 \sqcap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in *S*.
- 2 $S \rightarrow \sqcup \{x : D\} \cup S$ if $(x : C_1 \sqcup C_2) \in S$ and neither $(x : C_1) \in S$ nor $(x : C_2) \in S$ and $D = C_1$ or $D = C_2$.
- **I** $S \rightarrow_{\exists} \{xry, y: C\} \cup S$ if $(x: \exists r.C) \in S$, *y* is a fresh variable, and there is no *z* s.t. $(xrz) \in S$ and $(z: C) \in S$.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Transformation rules:

- $S \rightarrow_{\Box} \{x: C_1, x: C_2\} \cup S$ if $(x: C_1 \sqcap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in *S*.
- 2 $S \rightarrow \sqcup \{x : D\} \cup S$ if $(x : C_1 \sqcup C_2) \in S$ and neither $(x : C_1) \in S$ nor $(x : C_2) \in S$ and $D = C_1$ or $D = C_2$.
- **3** $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S, y$ is a fresh variable, and there is no *z* s.t. $(xrz) \in S$ and $(z : C) \in S$.
- $S \to_{\forall} \{y : C\} \cup S$ $if (x : \forall r.C), (xry) \in S and (y : C) \notin S.$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Transformation rules:

- $S \rightarrow_{\Box} \{x: C_1, x: C_2\} \cup S$ if $(x: C_1 \sqcap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in *S*.
- 2 $S \rightarrow \sqcup \{x : D\} \cup S$ if $(x : C_1 \sqcup C_2) \in S$ and neither $(x : C_1) \in S$ nor $(x : C_2) \in S$ and $D = C_1$ or $D = C_2$.
- **3** $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S, y$ is a fresh variable, and there is no *z* s.t. $(xrz) \in S$ and $(z : C) \in S$.
- $S \to_{\forall} \{y : C\} \cup S$ $if (x : \forall r.C), (xry) \in S and (y : C) \notin S.$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Transformation rules:

- $S \rightarrow_{\Box} \{x : C_1, x : C_2\} \cup S$ if $(x : C_1 \sqcap C_2) \in S$ and either $(x : C_1)$ or $(x : C_2)$ or both are not in *S*.
- 2 $S \rightarrow_{\sqcup} \{x : D\} \cup S$ if $(x : C_1 \sqcup C_2) \in S$ and neither $(x : C_1) \in S$ nor $(x : C_2) \in S$ and $D = C_1$ or $D = C_2$.
- **I** $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S, y$ is a fresh variable, and there is no *z* s.t. $(xrz) \in S$ and $(z : C) \in S$.
- $\begin{array}{c} \blacksquare \quad S \to_\forall \{y \colon C\} \cup S \\ \text{if } (x \colon \forall r.C), (xry) \in S \text{ and } (y \colon C) \notin S. \end{array}$

Notice: Deterministic rules (1,3,4) vs. non-deterministic (2). Generating rules (3) vs. non-generating (1,2,4).

November 30, 2015

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Tableau method (5): Invariances

Theorem (Invariance)

Let S and T be constraint systems.

If T has been generated by applying a deterministic rule to S, then S is satisfiable if and only if T is satisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and Completeness

Space Complexity

ABox Reasoning

Tableau method (5): Invariances

Theorem (Invariance)

Let S and T be constraint systems.

- If T has been generated by applying a deterministic rule to S, then S is satisfiable if and only if T is satisfiable.
- If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable if and only if the resulting system T is satisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability Model Construction Equivalences & NNF Constraint Systems Transforming

Invariances

Soundness and Completeness Space Complexity

Tableau method (5): Invariances

Theorem (Invariance)

Let S and T be constraint systems.

- If T has been generated by applying a deterministic rule to S, then S is satisfiable if and only if T is satisfiable.
- If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable if and only if the resulting system T is satisfiable.

Theorem (Termination)

Let C be an ALC concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x \in C\}$ Nebel, Lindner, Engesser - KR&R November 30, 2015

Constraint Systems

Invariances

Literature

JRG

A constraint system is called **closed** if no transformation rule can be applied.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and Completeness

Space Complexity ABox Beasoning

A constraint system is called closed if no transformation rule can be applied.

A clash is a pair of constraints of the form x : A and $x : \neg A$, where A is a concept name.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and Completeness

Space Complexity ABox Reasoning

A constraint system is called closed if no transformation rule can be applied.

A clash is a pair of constraints of the form x : A and $x : \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable if and only it does not contain a clash.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and Completeness

Space Complexity ABox Reasoning

A constraint system is called closed if no transformation rule can be applied.

A clash is a pair of constraints of the form x : A and $x : \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable if and only it does not contain a clash.

Proof idea.

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability Model Construction

Equivalences & NNF

Constraint Systems

Constraint Systems

Invariances

Soundness and Completeness

Space Complexity ABox Reasoning

Literature

FREIBURG

Space requirements

Because the tableau method is non-deterministic (\rightarrow_{\sqcup} rule), there could be exponentially many closed constraint systems in the end.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Literature

November 30, 2015

Space requirements

Because the tableau method is non-deterministic (\rightarrow_{\sqcup} rule), there could be exponentially many closed constraint systems in the end.

Interestingly, applying the rules on a single constraint system can lead to constraint systems of exponential size.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and Completeness

Space Complexity

Space requirements

Because the tableau method is non-deterministic (\rightarrow_{\sqcup} rule), there could be exponentially many closed constraint systems in the end.

Interestingly, applying the rules on a single constraint system can lead to constraint systems of exponential size.

Example

However: One can modify the algorithm so that it needs only polynomial space.

Idea: Generate a *y* only for one $\exists r.C$ and then proceed into the depth.

November 30, 2015

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability Model Construction

Equivalences & NNF

Constraint Systems

Constraint Systems

Invariances

Soundness and Completeness

Space Complexity ABox Reasoning

Literature

31/34

ABox reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ALC we do not need this because we are never forced to identify two objects.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Literature I

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Description Logic Handbook: Theory, Implementation, Applications , Cambridge University Press, Cambridge, UK, 2003.
Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence, 3:78–93, 1987.
Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements. Artificial Intelligence, 48:1–26, 1991.
Bernhard Hollunder and Werner Nutt. Subsumption Algorithms for Concept Languages. DFKI Research Report RR-90-04. DFKI, Saarbrücken, 1990. Revised version of paper that was published at ECAI-90.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Literature

UNI FREIBURG

Literature II

	Motivation
	Structural Subsumption Algorithms
F. Baader and U. Sattler. An Overview of Tableau Algorithms for Description Logics.	Tableau Subsumption Method Literature
Studia Logica, 69:5-40, 2001.	
I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description Logics. Logic Journal of the IGPL, 8(3):239-264, May 2000.	

