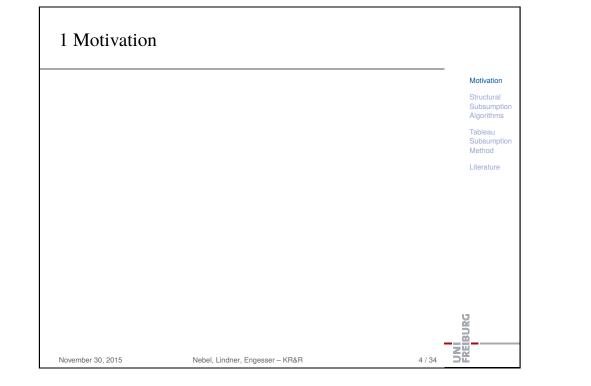
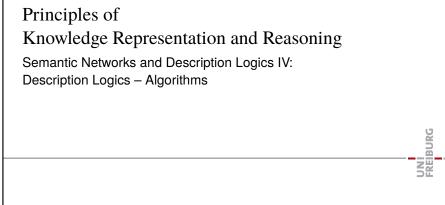
Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics IV: Description Logics – Algorithms

Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 30, 2015

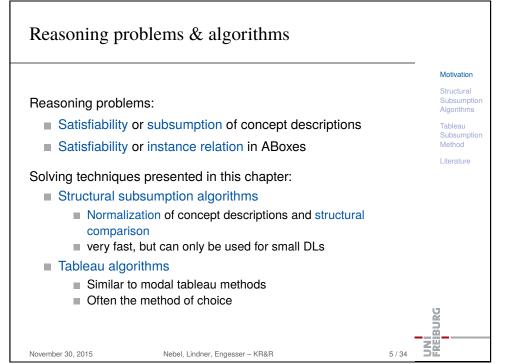


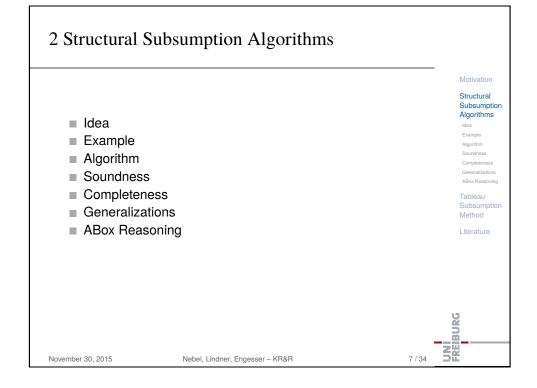
BURG

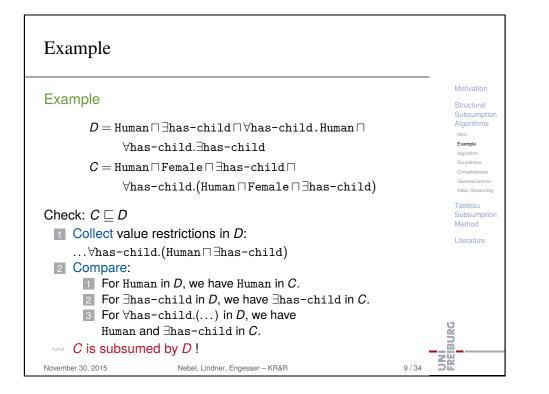
FREI



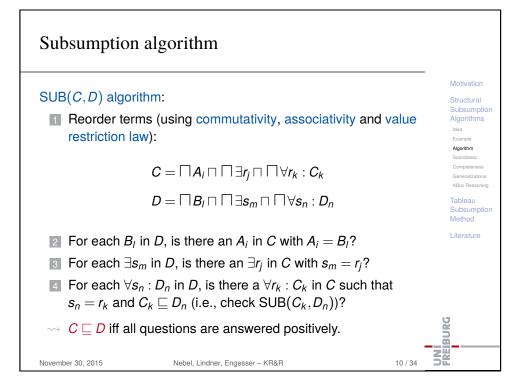
Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 30, 2015





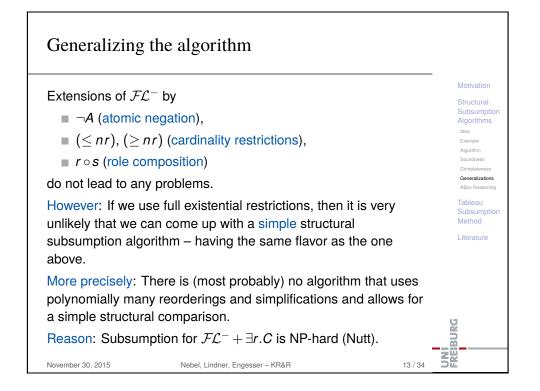


Structural subsumption algorithms In what follows we consider the rather small logic \mathcal{FL}^- : $\square C \sqcap D$ $\forall r.C$ Idea \blacksquare $\exists r$ (simple existential quantification) Algorithm Soundness To solve the subsumption problem for this logic we apply the ABox Reasonin following idea: Tableau In the conjunction, collect all universally quantified Method expressions (also called value restrictions) with the same Literature role and build complex value restriction: $\forall r. C \sqcap \forall r. D \rightarrow \forall r. (C \sqcap D).$ 2 Compare all conjuncts with each other. For each conjunct in the subsuming concept there should BURG be a corresponding one in the subsumed one. **NU** Nebel, Lindner, Engesser - KR&R 8/34 November 30, 2015

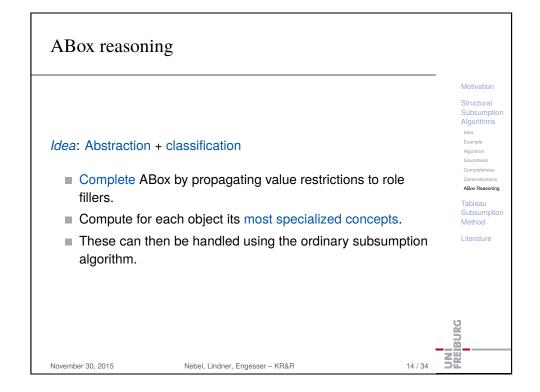


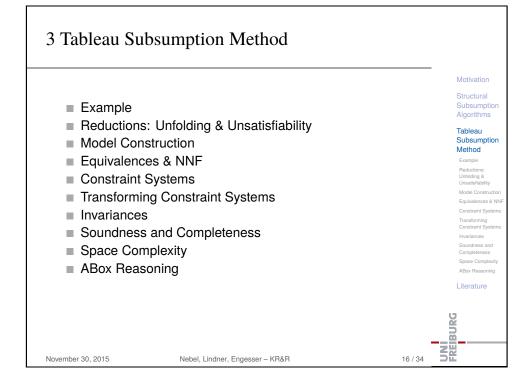
Soundness

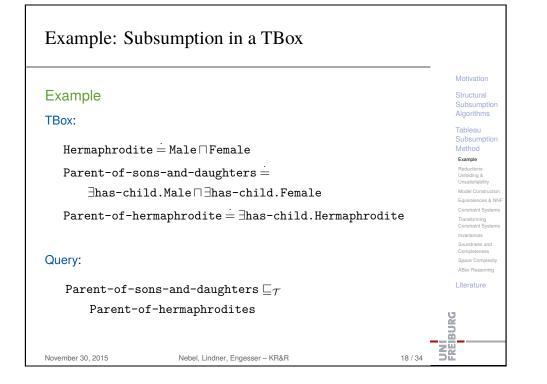
Theorem (Coundrose)				
Theorem (Soundness)				
$SUB(C,D) \Rightarrow C \sqsubseteq D$				
$SOB(C,D) \Rightarrow C \sqsubseteq L$			Algorithms	
			Example	
Proof sketch.			Algorithm	
FTOOT SKELCTI.				
Reordering of terms step (1):				
 Commutativity and 	associativity are trivial		ABox Reasoning	
	T	-	Tableau	
 Value restriction la 	w. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$		Subsumption Method	
Assume $d \in (\forall r.(d))$	$(\Omega \square \Omega))^{\mathcal{I}}$		Method	
If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that				
$\boldsymbol{d} \in \left(\forall \boldsymbol{r}. \boldsymbol{C} \sqcap \forall \boldsymbol{r}. \boldsymbol{D} \right)^{\mathcal{I}}.$				
If there is an $oldsymbol{e} \in \mathcal{I}$	\mathcal{D} with $(d,e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}}$	$\cap D^{\perp}$.		
Since e is arbitrary	d , we have $d \in (\forall r.C)^{\mathcal{I}}$ and $d \in (\forall r.D)^{\mathcal{I}}$,			
i.e., $(\forall r.(C \sqcap D))^{-}$	$\mathcal{T} \subseteq (\forall r. C \sqcap \forall r. D)^{\mathcal{I}}.$			
The other direction is similar.				
			2	
Steps (2+3+4): Inductior	n on the nesting depth of \forall -expressions.		— ——	
November 30, 2015	Nebel, Lindner, Engesser – KR&R	11/34	£	
	,,			

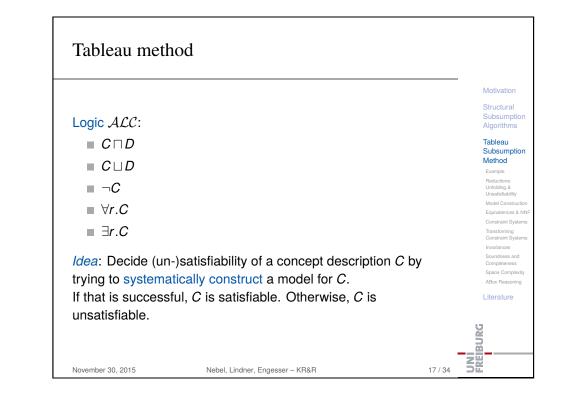


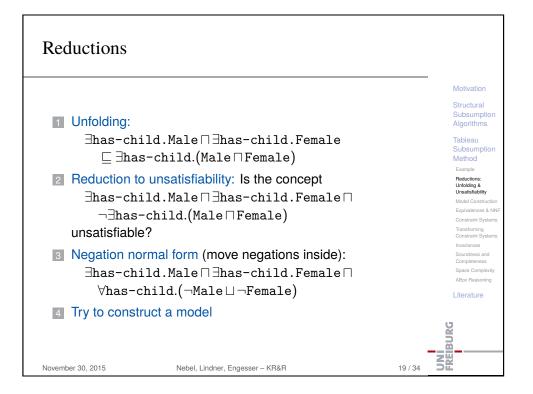
Completeness	S					
			Motivation			
Theorem (Comp	oleteness)		Structural Subsumption			
$C \sqsubseteq D \Rightarrow SUB(C)$,D).		Algorithms Idea Example Algorithm Soundness			
Proof idea.			Completeness Generalizations			
One shows the con	trapositive:		ABox Reasoning			
	$\neg SUB(C,D) \Rightarrow C \not\sqsubseteq D$		Subsumption Method			
Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element d such that						
	$m{d}\in m{C}^{\mathcal{I}}, ext{ but }m{d} ot\in m{D}^{\mathcal{I}}.$					
November 30, 2015	Nebel, Lindner, Engesser – KR&R	12 / 34	54			

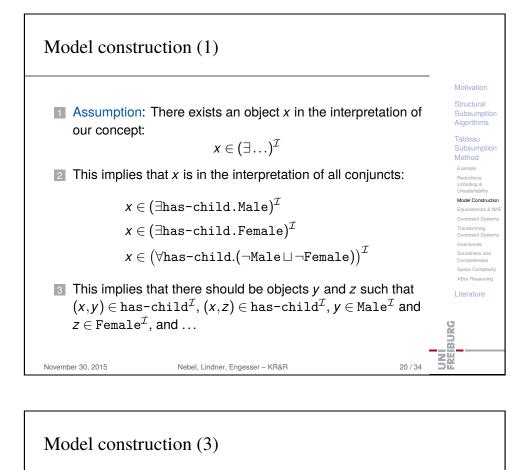


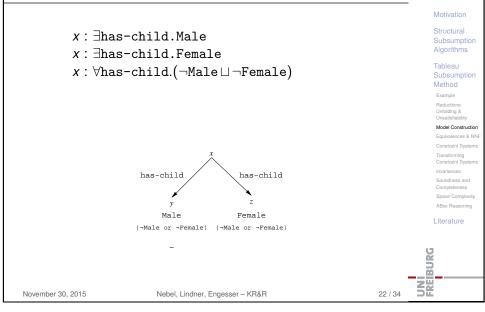


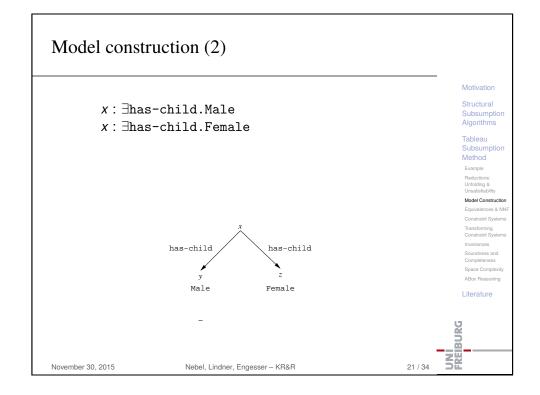


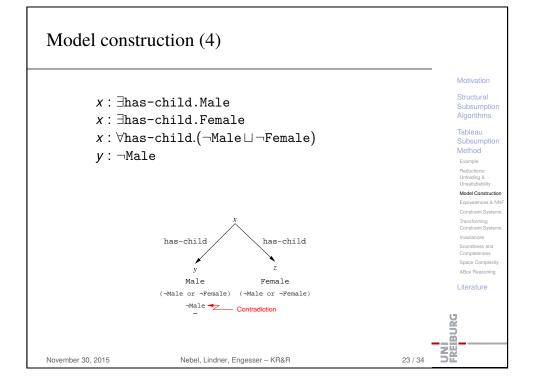


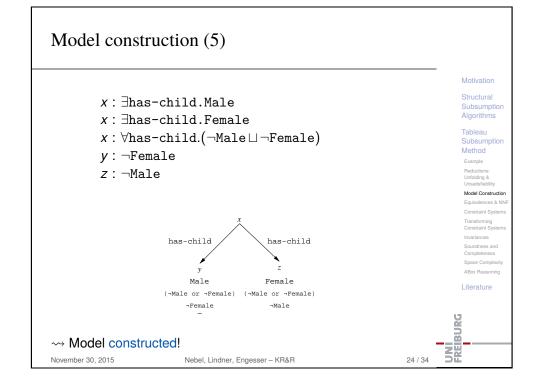












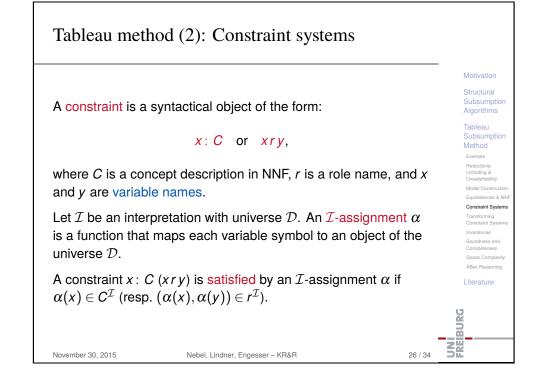


Tableau method (1): NNF

We write: $C \equiv D$ iff $C \sqsubset D$ and $D \sqsubset C$. Now we have the following equivalences:

$$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg (C \sqcup D) \equiv \neg C \sqcap \neg D$$
$$\neg (\forall r.C) \equiv \exists r. \neg C \qquad \neg (\exists r.C) \equiv \forall r. \neg C$$
$$\neg \neg C \equiv C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF).

Theorem (NNF)

The negation normal form of an ALC concept can be computed in polynomial time.

November 30, 2015

Nebel, Lindner, Engesser - KR&R

Tableau method (3): Constraint systems Definition A constraint system S is a finite, non-empty set of constraints. Example An \mathcal{I} -assignment α satisfies *S* if α satisfies each constraint in *S*. Reductions S is satisfiable if there exist \mathcal{T} and α such that α satisfies S. Theorem Invariances An ALC concept C in NNF is satisfiable if and only if the system $\{x: C\}$ is satisfiable.

Model Construction Equivalences & NN Constraint Systems Space Complexit ABox Reasonin

Literature

BURG

NU

November 30, 2015

27 / 34

Algorithms

Tableau Reductions Model Construc Equivalences & NN Constraint Syste Invariances

Space Complexi ABox Reasonin

Literature

URG

8

NN

25/34

Tableau method (4): Transforming constraint systems

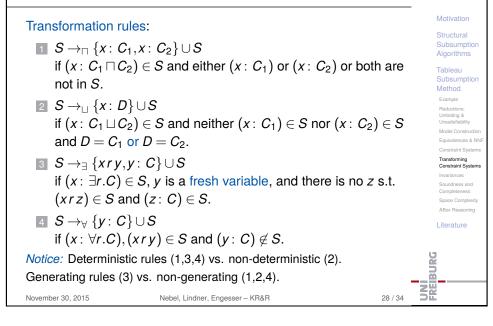


Tableau method (6): Soundness and completeness

A constraint system is called closed if no transformation rule can be applied.

A clash is a pair of constraints of the form x : A and $x : \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable if and only it does not contain a clash.

Proof idea.

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

Let S and T be constraint systems. If T has been generated by applying a deterministic rule to S, then S is satisfiable if and only if T is satisfiable.

Tableau method (5): Invariances

If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S. then it can be applied such that S is satisfiable if and only if the resulting system T is satisfiable.

Theorem (Termination)

Theorem (Invariance)

Let C be an ALC concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x \cdot C\}$ November 30, 2015 Nebel, Lindner, Engesser - KR&R 29/34

Space requirements

Because the tableau method is non-deterministic ($\rightarrow_{\downarrow\downarrow}$ rule), there could be exponentially many closed constraint systems in the end.

Interestingly, applying the rules on a single constraint system can lead to constraint systems of exponential size.

Example

Subsumption Algorithms

Tableau

Example

Beductions

Model Const

Soundness and

Completeness

Space Complex ABox Reasoni

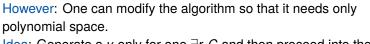
Literature

URG

INI

30 / 34

 $\exists r.A \sqcap \exists r.B \sqcap$ $\forall r.(\exists r.A \sqcap \exists r.B \sqcap$ $\forall r.(\exists r.A \sqcap \exists r.B \sqcap$ $\forall r.(\ldots)))$



Idea: Generate a *y* only for one $\exists r.C$ and then proceed into the depth. Nebel, Lindner, Engesser - KR&R

November 30, 2015

Tableau

Reductions

Model Construe

Constraint Syst

Invariances

Completenes

ABox Beason

BURG

NIN

Space Complex

Reductions Model Constru Completenes Space Complexit ABox Reaso

BURG

NUNI

31/34

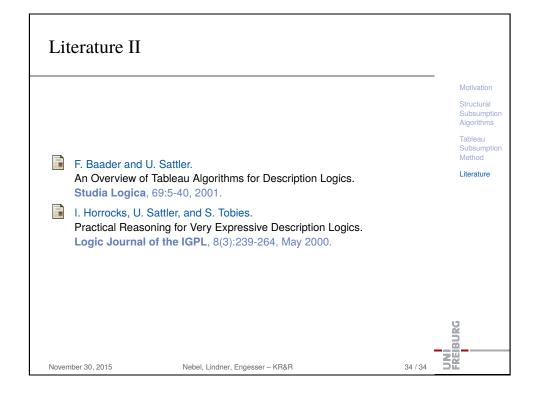
November 30, 2015

ABox reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ALC we do not need this because we are never forced to identify two objects.

		S S
		5
		32/34
November 30, 2015	Nebel, Lindner, Engesser – KR&R	32 / 34 🛛 🎞



Literature I

Motivation Structural Subsumption Algorithms Tableau

Subsumption Method

Model Construction Equivalences & NN

Constraint Systems Transforming Constraint Systems

Invariances Soundness and

Space Complexity ABox Reasoning Literature

Example Reductions: Unfolding &

			Motivation
	Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Description Logic Handbook: Theory, Implementation, Applications , Cambridge University Press, Cambridge, UK, 2003.		Structural Subsumption Algorithms
			Tableau Subsumption Method
	Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence, 3:78–93, 1987.		Literature
	Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements. Artificial Intelligence, 48:1–26, 1991.		
	Bernhard Hollunder and Werner Nutt. Subsumption Algorithms for Concept Languages. DFKI Research Report RR-90-04. DFKI, Saarbrücken, 1990. Revise version of paper that was published at ECAI-90.	ed	EBURG
Novem	ber 30, 2015 Nebel, Lindner, Engesser – KR&R	33 / 34	25