Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics IV: Description Logics – Algorithms

Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 30, 2015

UNI FREIBURG

Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics IV: Description Logics – Algorithms

Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 30, 2015

UNI FREIBURG

1 Motivation

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Literature

November 30, 2015

Nebel, Lindner, Engesser - KR&R

Reasoning problems & algorithms

Reasoning problems:

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes
- Solving techniques presented in this chapter:
 - Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
 - Tableau algorithms
 - Similar to modal tableau methods
 - Often the method of choice

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

2 Structural Subsumption Algorithms

	Motivation
	Structural Subsumption Algorithms
Idea	Idea
Example	Example Algorithm
Algorithm	Soundness Completeness
Soundness	Generalizations ABox Reasoning
CompletenessGeneralizations	Tableau Subsumption Method
ABox Reasoning	Literature

Structural subsumption algorithms

In what follows we consider the rather small logic \mathcal{FL}^- :

- $\square C \sqcap D$
- ∀r.C
- \blacksquare $\exists r$ (simple existential quantification)
- To solve the subsumption problem for this logic we apply the following idea:
 - In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

 $\forall r. C \sqcap \forall r. D \rightarrow \forall r. (C \sqcap D).$

 Compare all conjuncts with each other.
 For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one.

November 30, 2015

Nebel, Lindner, Engesser – KR&R

Motivation

Structural Subsumption Algorithms

Idea

Example Algorithm Soundness Completeness Generalizations ABox Reasoning

Tableau Subsumptior Method

Literature

Example

Example

 $D = \operatorname{Human} \sqcap \exists has-child \sqcap \forall has-child.Human \sqcap \forall has-child.\exists has-child \\ C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists has-child \sqcap$

 $\forall has-child.(Human \sqcap Female \sqcap \exists has-child)$

Check: $C \sqsubseteq D$

- **Collect** value restrictions in *D*:
 - ...∀has-child.(Human □ ∃has-child)
- 2 Compare:
 - 1 For Human in D, we have Human in C.
 - **2** For \exists has-child in *D*, we have \exists has-child in *C*.
 - 3 For ∀has-child.(...) in *D*, we have Human and ∃has-child in *C*.
- $\rightsquigarrow C$ is subsumed by D !

Motivation

Structural Subsumption Algorithms

Idea

Example Algorithm

Soundnoss

Completeness

Generalizations ABox Reasoning

Tableau

Subsumption Method

Subsumption algorithm

SUB(C,D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

 $C = \Box A_i \Box \Box \exists r_j \Box \Box \forall r_k : C_k$ $D = \Box B_l \Box \Box \exists s_m \Box \Box \forall s_n : D_n$

- **2** For each B_i in D, is there an A_i in C with $A_i = B_i$?
- **3** For each $\exists s_m$ in *D*, is there an $\exists r_j$ in *C* with $s_m = r_j$?
- 4 For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $s_n = r_k$ and $C_k \sqsubseteq D_n$ (i.e., check SUB(C_k, D_n))?
- \sim *C* \sqsubseteq *D* iff all questions are answered positively.

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness Completeness

Generalizations ABox Reasoning

Tableau Subsumption Method

Literature

Soundness

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

1 Commutativity and associativity are trivial

2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. If there is an $e \in \mathcal{D}$ with $(d, e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$. Since *e* is arbitrary, we have $d \in (\forall r.C)^{\mathcal{I}}$ and $d \in (\forall r.D)^{\mathcal{I}}$, i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. The other direction is similar.

Steps (2+3+4): Induction on the nesting depth of \forall -expressions.

November 30, 2015

Nebel, Lindner, Engesser – KR&R

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness

Completeness

Generalizations ABox Reasoning

Tableau Subsumption Method

Literature

Completeness

Theorem (Completeness)

 $C \sqsubseteq D \Rightarrow SUB(C,D).$

Proof idea.

One shows the contrapositive:

$$\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element *d* such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$.

Motivation

Structural Subsumption Algorithms

ldea

Example

Algorithm

Soundness

Completeness

Generalizations ABox Reasoning

Tableau Subsumption Method

Literature

12/34

November 30, 2015

Nebel, Lindner, Engesser - KR&R

Generalizing the algorithm

Extensions of \mathcal{FL}^- by
■ $\neg A$ (atomic negation),
$\blacksquare (\leq nr), (\geq nr) \text{ (cardinality restrictions)},$
■ $r \circ s$ (role composition)
do not lead to any problems.
However: If we use full existential restrictions, then it is very unlikely that we can come up with a simple structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison.

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

November 30, 2015

13/34

Generalizations ABox Reasoning

Literature

BURG

_

Idea: Abstraction + classification

- Complete ABox by propagating value restrictions to role fillers.
- Compute for each object its most specialized concepts.
- These can then be handled using the ordinary subsumption algorithm.

Motivation

Structural Subsumption Algorithms

ldea.

Example

Algorithm

Soundness

Completeness

ABox Reasoning

Tableau Subsumption Method

3 Tableau Subsumption Method

 Example Reductions: Unfolding & Unsatisfiability
Model Construction
Equivalences & NNF
Constraint Systems
Transforming Constraint Systems
Invariances
Soundness and Completeness
Space Complexity
ABox Reasoning

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability Model Construction Equivalences & NNI Constraint Systems Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

 $\text{Logic }\mathcal{ALC}\text{:}$

- $\square C \sqcap D$
- C⊔D
- □ ¬C
- ∀r.C
- ∃*r*.*C*

Idea: Decide (un-)satisfiability of a concept description C by trying to systematically construct a model for C. If that is successful, C is satisfiable. Otherwise, C is unsatisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability Model Construction Equivalences & NWI Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity

Example: Subsumption in a TBox

```
Example
TBox:
    Hermaphrodite = Male □ Female
    Parent-of-sons-and-daughters =
        ∃has-child.Male □ ∃has-child.Female
    Parent-of-hermaphrodite = ∃has-child.Hermaphrodite
```

Query:

```
\begin{array}{l} \texttt{Parent-of-sons-and-daughters} \sqsubseteq_{\mathcal{T}} \\ \texttt{Parent-of-hermaphrodites} \end{array}
```

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unbolding & Unsatisfilability Model Construction Equivalences & NNF Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity Abox Reasoning

Reductions

1 Unfolding:

∃has-child.Male□∃has-child.Female

 $\sqsubseteq \exists has-child.(Male \sqcap Female)$

2 Reduction to unsatisfiability: Is the concept ∃has-child.Male□∃has-child.Female□ ¬∃has-child.(Male□Female) unsatisfiable?

- Solution Negation normal form (move negations inside): ∃has-child.Male□∃has-child.Female□ ∀has-child.(¬Male□¬Female)
- 4 Try to construct a model

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Constraint Systems

Transforming

Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Model construction (1)

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^{\mathcal{I}}$$

2 This implies that x is in the interpretation of all conjuncts:

$$egin{aligned} & x \in (\exists \texttt{has-child.Male})^\mathcal{I} \ & x \in (\exists \texttt{has-child.Female})^\mathcal{I} \ & x \in (\forall \texttt{has-child.}(\neg \texttt{Male} \sqcup \neg \texttt{Female}))^\mathcal{I} \end{aligned}$$

3 This implies that there should be objects y and z such that $(x,y) \in has-child^{\mathcal{I}}, (x,z) \in has-child^{\mathcal{I}}, y \in Male^{\mathcal{I}}$ and $z \in Female^{\mathcal{I}}$, and ...

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF Constraint Systems Transforming Constraint Systems Invariances Soundness and Completeness Space Complexity

Literature

November 30, 2015

Model construction (2)

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNR Constraint Systems Transforming

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Model construction (3)

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNR Constraint Systems Transforming Constraint Systems

Coundance and

Completeness

Space Complexity

ABox Reasoning

Model construction (4)

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions:

Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF Constraint Systems Transforming Constraint Systems

Invariances

Soundness and

Completeness

ABoy Reasoning

Model construction (5)

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF Constraint Systems Transforming Constraint Systems

Soundness and

Completeness

Space Complexity

ABox Reasoning

Literature

~ Model constructed!

November 30, 2015

Nebel, Lindner, Engesser - KR&R

We write: $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$. Now we have the following equivalences:

 $\neg(C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg(C \sqcup D) \equiv \neg C \sqcap \neg D$ $\neg(\forall r.C) \equiv \exists r. \neg C \qquad \neg(\exists r.C) \equiv \forall r. \neg C$ $\neg \neg C \equiv C$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF).

Theorem (NNF)

The negation normal form of an \mathcal{ALC} concept can be computed in polynomial time.

Wouvau

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Literature

November 30, 2015

A constraint is a syntactical object of the form:

x: C or xry,

where C is a concept description in NNF, r is a role name, and x and v are variable names.

Let \mathcal{I} be an interpretation with universe \mathcal{D} . An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} .

A constraint x: C (xry) is satisfied by an \mathcal{I} -assignment α if $\alpha(x) \in C^{\mathcal{I}}$ (resp. $(\alpha(x), \alpha(y)) \in r^{\mathcal{I}}$).

Algorithms

Model Construction

Constraint Systems

Literature

Definition

A constraint system *S* is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies *S* if α satisfies each constraint in *S*. *S* is satisfiable if there exist \mathcal{I} and α such that α satisfies *S*.

Theorem

An ALC concept C in NNF is satisfiable if and only if the system $\{x: C\}$ is satisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Completeness

Space Complexity

ABox Reasoning

Tableau method (4): Transforming constraint systems

Transformation rules:

- $S \rightarrow_{\Box} \{x: C_1, x: C_2\} \cup S$ if $(x: C_1 \sqcap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in *S*.
- 2 $S \rightarrow_{\sqcup} \{x : D\} \cup S$ if $(x : C_1 \sqcup C_2) \in S$ and neither $(x : C_1) \in S$ nor $(x : C_2) \in S$ and $D = C_1$ or $D = C_2$.
- **I** $S \rightarrow_{\exists} \{xry, y : C\} \cup S$ if $(x : \exists r.C) \in S, y$ is a fresh variable, and there is no *z* s.t. $(xrz) \in S$ and $(z : C) \in S$.
- $\begin{array}{c} \blacksquare \quad S \to_\forall \{y \colon C\} \cup S \\ \text{if } (x \colon \forall r.C), (xry) \in S \text{ and } (y \colon C) \notin S. \end{array}$

Notice: Deterministic rules (1,3,4) vs. non-deterministic (2). Generating rules (3) vs. non-generating (1,2,4).

November 30, 2015

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Tableau method (5): Invariances

Theorem (Invariance)

Let S and T be constraint systems.

- If T has been generated by applying a deterministic rule to S, then S is satisfiable if and only if T is satisfiable.
- If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable if and only if the resulting system T is satisfiable.

Theorem (Termination)

Let C be an ALC concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x \in C\}$ November 30, 2015 Nebel, Lindner, Engesser – KR&R 29/34

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Unsatisfiability Model Construction Equivalences & NNF Constraint Systems Transforming Constraint Systems

Invariances

Soundness and Completeness Space Complexity

Literature

JRG

Tableau method (6): Soundness and completeness

A constraint system is called closed if no transformation rule can be applied.

A clash is a pair of constraints of the form x : A and $x : \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable if and only it does not contain a clash.

Proof idea.

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances Soundness and

Soundness and Completeness

Space Complexity ABox Reasoning

Literature

November 30, 2015

Space requirements

Because the tableau method is non-deterministic (\rightarrow_{\sqcup} rule), there could be exponentially many closed constraint systems in the end.

Interestingly, applying the rules on a single constraint system can lead to constraint systems of exponential size.

Example

However: One can modify the algorithm so that it needs only polynomial space.

Idea: Generate a *y* only for one $\exists r.C$ and then proceed into the depth.

November 30, 2015

Nebel, Lindner, Engesser - KR&R

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and Completeness

Space Complexity ABox Reasoning

Literature

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ALC we do not need this because we are never forced to identify two objects.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Soundness and

Space Complexity

ABox Reasoning

Literature I

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Description Logic Handbook: Theory, Implementation, Applications , Cambridge University Press, Cambridge, UK, 2003.
Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence, 3:78–93, 1987.
Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements. Artificial Intelligence, 48:1–26, 1991.
Bernhard Hollunder and Werner Nutt. Subsumption Algorithms for Concept Languages. DFKI Research Report RR-90-04. DFKI, Saarbrücken, 1990. Revised version of paper that was published at ECAI-90.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Literature

UNI FREIBURG

Literature II

	Motivation
	Structural Subsumption Algorithms
F. Baader and U. Sattler.	Tableau Subsumption Method
An Overview of Tableau Algorithms for Description Logics. Studia Logica , 69:5-40, 2001.	Literature
I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description Logics. Logic Journal of the IGPL, 8(3):239-264, May 2000.	

