Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics III: Description Logics – Reasoning Services and Reductions

UNI FREIBURG

Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 25, 2015

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

Motivation

November 25, 2015

Nebel, Lindner, Engesser - KR&R

Example TBox & ABox

			Services
Male $\doteq \neg$ Female			General TBox
Human 드 Living_entity	DIANA:	Woman	Reasoning
Woman ≐ Human 🗆 Female	ELIZABETH:	Woman	Services
Man ≐ Human ⊓ Male	CHARLES:	Man	General ABox
Mother ≐ Woman ⊓∃has-child.Human	EDWARD:	Man	Reasoning
Father ≐ Man ∏∃has-child.Human	ANDREW:	Man	Services
Parent \doteq Father \sqcup Mother	DIANA:	Mother-without-daughtermmary and	
Grandmother	(ELIZABETH,	CHARLES):	has-child ^{Outlook}
≐ Woman ∏∃has-child.Parent	(ELIZABETH,	EDWARD):	has-child
Mother-without-daughter	(ELIZABETH,	ANDREW):	has-child
≐ Mother ⊓∀has-child.Male	(DIANA,	WILLIAM):	has-child
Mother-with-many-children	(CHARLES,	WILLIAM):	has-child
\doteq Mother \sqcap (\geq 3has-child)			

Motivation Basic Reasoning

What do we want to know?

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

Motivation

- Basic Reasoning Services
- General TBox Reasoning Services
- General ABox Reasoning Services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

Motivation

- Basic Reasoning Services
- General TBox Reasoning Services
- General ABox Reasoning Services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

Motivation

- Basic Reasoning Services
- General TBox Reasoning Services
- General ABox Reasoning Services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.

Motivation

- Basic Reasoning Services
- General TBox Reasoning Services
- General ABox Reasoning Services

Summary and Outlook

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

Basic Reasoning Services

Satisfiability of concept descriptions

Satisfiability of concept descriptions

Given a concept description C in "isolation", i.e., in an empty TBox, is C satisfiable?

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Satisfiability in TBox Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Satisfiability of concept descriptions

Satisfiability of concept descriptions

Given a concept description *C* in "isolation", i.e., in an empty TBox, is *C* satisfiable?

Test:

- Does there exist an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x C(x)$ satisfiable?

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Satisfiability in TBox Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Satisfiability of concept descriptions

Satisfiability of concept descriptions

Given a concept description *C* in "isolation", i.e., in an empty TBox, is *C* satisfiable?

Test:

- Does there exist an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x C(x)$ satisfiable?

Example

Woman \sqcap (\leq 0 has-child) \sqcap (\geq 1 has-child) is unsatisfiable.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Satisfiability in TBox Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

Satisfiability of concept descriptions in a TBox

Satisfiability of concept descriptions in a TBox

Given a TBox T and a concept description C, is C satisfiable?

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Satisfiability in TBox Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Satisfiability of concept descriptions in a TBox

Satisfiability of concept descriptions in a TBox

Given a TBox T and a concept description C, is C satisfiable?

Test:

- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Satisfiability in TBox Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Satisfiability of concept descriptions in a TBox

Satisfiability of concept descriptions in a TBox

Given a TBox T and a concept description C, is C satisfiable?

Test:

- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?

Example

Mother-without-daughter □ ∀has-child.Female is unsatisfiable, given our previously specified family TBox.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Satisfiability in TBox Eliminating the TBox Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

BURG

Reduction: Getting rid of the TBox

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Eliminating the TBox

Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:

- Since TBoxes are cycle-free, one can understand a concept definition as a kind of "macro".
- For a given TBox *T* and a given concept description *C*, all defined concept symbols appearing in *C* can be expanded until *C* contains only undefined concept symbols.
- An expanded concept description is then satisfiable if and only if *C* is satisfiable in \mathcal{T} .
- *Problem*: What do we do with partial definitions (using □)?

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Eliminating the TBox

Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

BURG

Normalized terminologies

A terminology is called normalized when it does not contain definitions fo the form $A \sqsubseteq C$.

In order to normalize a terminology, replace

$$A \sqsubseteq C$$

by

$$A \doteq \mathbf{A}^* \sqcap \mathbf{C},$$

where A^* is a fresh concept symbol (not appearing elsewhere in T).

If T is a terminology, the normalized terminology is denoted by T.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox

Eliminating the TBo:

Normalization

General TBox Reasoning Services

General ABox Reasoning Services

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T} , then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T} , it holds $A^{\mathcal{I}} = A^{\mathcal{I}'}$, and vice versa.

Proof.

" \Rightarrow ": Let \mathcal{I} be a model of \mathcal{T} . This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox

Eliminating the TBo:

Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T} , then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T} , it holds $A^{\mathcal{I}} = A^{\mathcal{I}'}$, and vice versa.

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T} . This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume ($A \sqsubseteq C$) ∈ \mathcal{T} , i.e., we have ($A \doteq A^* \sqcap C$) ∈ $\widetilde{\mathcal{T}}$.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox

Eliminating the TBo:

Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T} , then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T} , it holds $A^{\mathcal{I}} = A^{\mathcal{I}'}$, and vice versa.

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T} . This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume ($A \sqsubseteq C$) $\in \mathcal{T}$, i.e., we have ($A \doteq A^* \sqcap C$) $\in \widetilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} := A^{\mathcal{I}}$.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox

Eliminating the TBo:

Normalization Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

BURG

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T} , then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T} , it holds $A^{\mathcal{I}} = A^{\mathcal{I}'}$, and vice versa.

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T} . This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume ($A \sqsubseteq C$) $\in \mathcal{T}$, i.e., we have ($A \doteq A^* \sqcap C$) $\in \widetilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} \coloneqq A^{\mathcal{I}}$. \mathcal{I}' obviously satisfies $\widetilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T} .

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox

Eliminating the TBo: Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

BURG

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T} , then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T} , it holds $A^{\mathcal{I}} = A^{\mathcal{I}'}$, and vice versa.

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T} . This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \doteq A^* \sqcap C) \in \widetilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} := A^{\mathcal{I}}$. \mathcal{I}' obviously satisfies $\widetilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T} . " \Leftarrow ": Given a model \mathcal{I}' of $\widetilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox

Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

TBox unfolding

- We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.
- Example: Mother = Woman □... is unfolded to Mother = (Human □ Female) □...

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

TBox unfolding

- We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.
- Example: Mother = Woman □... is unfolded to Mother = (Human □ Female) □...
- We write $U(\mathcal{T})$ to denote a one-step unfolding and $U^n(\mathcal{T})$ to denote an *n*-step unfolding.
- We say that \mathcal{T} is unfolded if $U(\mathcal{T}) = \mathcal{T}$.
- $U^n(\mathcal{T})$ is called the unfolding of \mathcal{T} if $U^n(\mathcal{T}) = U^{n+1}(\mathcal{T})$. If such an unfolding exists, it is denoted by $\widehat{\mathcal{T}}$.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology ${\cal T}$ can be unfolded, i.e., its unfolding $\widehat{{\cal T}}$ exists.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology ${\cal T}$ can be unfolded, i.e., its unfolding $\widehat{{\cal T}}$ exists.

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts. $\hfill\square$

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Theorem (Model equivalence for unfolded terminologies)

 ${\cal I}$ is a model of a normalized terminology ${\cal T}$ if and only if it is a model of $\widehat{{\cal T}}.$

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Theorem (Model equivalence for unfolded terminologies)

 ${\cal I}$ is a model of a normalized terminology ${\cal T}$ if and only if it is a model of $\widehat{{\cal T}}.$

Proof sketch.

" \Rightarrow ": Let \mathcal{I} be a model of \mathcal{T} .

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

JRG

Theorem (Model equivalence for unfolded terminologies)

 ${\cal I}$ is a model of a normalized terminology ${\cal T}$ if and only if it is a model of $\widehat{{\cal T}}.$

Proof sketch.

" \Rightarrow ": Let \mathcal{I} be a model of \mathcal{T} . Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

Theorem (Model equivalence for unfolded terminologies)

 ${\cal I}$ is a model of a normalized terminology ${\cal T}$ if and only if it is a model of $\widehat{{\cal T}}.$

Proof sketch.

" \Rightarrow ": Let \mathcal{I} be a model of \mathcal{T} . Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\widehat{\mathcal{T}}$.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Theorem (Model equivalence for unfolded terminologies)

 ${\cal I}$ is a model of a normalized terminology ${\cal T}$ if and only if it is a model of $\widehat{{\cal T}}.$

Proof sketch.

"⇒": Let \mathcal{I} be a model of \mathcal{T} . Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

" \leftarrow ": Let \mathcal{I} be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above).

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Theorem (Model equivalence for unfolded terminologies)

 ${\cal I}$ is a model of a normalized terminology ${\cal T}$ if and only if it is a model of $\widehat{{\cal T}}.$

Proof sketch.

" \Rightarrow ": Let \mathcal{I} be a model of \mathcal{T} . Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

" \Leftarrow ": Let \mathcal{I} be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above).

This means that any model \mathcal{T} is also a model of \mathcal{T} .

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology T are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T} .

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T} .

Proof idea.

Use $\widehat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Services

Unfoldina

Services

Outlook

Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology T are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T} .

Proof idea.

Use $\widehat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Fach TRov has at laset one model November 25, 2015 Nebel, Lindner, Engesser – KR&R

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \widehat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \widehat{C} satisfiable in an empty terminology.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \widehat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \widehat{C} satisfiable in an empty terminology.

Proof.

" \Rightarrow ": trivial.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

BURG

Nebel, Lindner, Engesser - KR&R

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \widehat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \widehat{C} satisfiable in an empty terminology.

Proof.

" \Rightarrow ": trivial.

" \leftarrow ": Use the interpretation for all the symbols in \widehat{C} to generate an initial interpretation of \mathcal{T} .

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

BURG

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \widehat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \widehat{C} satisfiable in an empty terminology.

Proof.

" \Rightarrow ": trivial.

" \Leftarrow ": Use the interpretation for all the symbols in \widehat{C} to generate an initial interpretation of \mathcal{T} . Then extend it to a full model \mathcal{I} of \mathcal{T} .

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

BURG

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \widehat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \widehat{C} satisfiable in an empty terminology.

Proof.

" \Rightarrow ": trivial.

" \leftarrow ": Use the interpretation for all the symbols in \widehat{C} to generate an initial interpretation of \mathcal{T} . Then extend it to a full model \mathcal{I} of \mathcal{T} . This satisfies \mathcal{T} as well as \widehat{C} . Since $\widehat{C}^{\mathcal{I}} = C^{\mathcal{I}}$, it satisfies also C.

Motivation

Basic Reasoning Services

Satifisfiability without a TBox Satisfiability in TBox Eliminating the TBox Normalization

Unfolding

General TBox Reasoning Services

General ABox Reasoning Services

Basic Reasoning Services

General TBox Reasoning Services

Subsumption Subsumption vs

Satisfiability

Classification

General ABox Reasoning Services

Summary and Outlook

General TBox Reasoning Services

Subsumption in a TBox

Subsumption in a TBox

Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} (symb. $C \sqsubseteq_{\mathcal{T}} D$)?

Test:

- Is *C* interpreted as a subset of *D* in each model \mathcal{I} of \mathcal{T} , i.e. $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} into FOL?

Motivation

Basic Reasoning Services

General TBox Reasoning Services

Subsumption

Subsumption vs. Satisfiability Classification

General ABox Reasoning Services

Subsumption in a TBox

Subsumption in a TBox

Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} (symb. $C \sqsubseteq_{\mathcal{T}} D$)?

Test:

- Is *C* interpreted as a subset of *D* in each model \mathcal{I} of \mathcal{T} , i.e. $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of T into FOL?

Example

Given our family TBox, it holds Grandmother $\sqsubseteq_{\mathcal{T}}$ Mother.

Motivation

Basic Reasoning Services

General TBox Reasoning Services

Subsumption

Subsumption vs. Satisfiability Classification

General ABox Reasoning Services

Summary and Outlook

20 / 35

BURG

Subsumption (without a TBox)

Subsumption (without a TBox)

Given two concept descriptions *C* and *D*, is *C* subsumed by *D* regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is *C* interpreted as a subset of *D* for all interpretations \mathcal{I} $(C^{\mathcal{I}} \subseteq D^{\mathcal{I}})$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?

Motivation

Basic Reasoning Services

General TBox Reasoning Services

Subsumption

Subsumption vs. Satisfiability Classification

General ABox Reasoning Services

Subsumption (without a TBox)

Subsumption (without a TBox)

Given two concept descriptions *C* and *D*, is *C* subsumed by *D* regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is *C* interpreted as a subset of *D* for all interpretations \mathcal{I} $(C^{\mathcal{I}} \subseteq D^{\mathcal{I}})$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?

Example

Clearly, Human \sqcap Female \sqsubseteq Human.

Motivation

Basic Reasoning Services

General TBox Reasoning Services

Subsumption

Subsumption vs. Satisfiability Classification

General ABox Reasoning Services

Summary and Outlook

21 / 35

BURG

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:
 - ... normalize and unfold TBox and concept descriptions.

Basic Reasoning Services

General TBox Reasoning Services

Subsumption vs. Satisfiability

Classification

General ABox Reasoning Services

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:
 - ... normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability:
 - ... $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.

Basic Reasoning Services

General TBox Reasoning Services

Subsumption vs. Satisfiability

Classification

General ABox Reasoning Services

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:
 - ... normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability:
 - ... $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.
- Unsatisfiability can be reduced to subsumption: ... *C* is unsatisfiable iff $C \sqsubseteq (C \sqcap \neg C)$.

Basic Reasoning Services

General TBox Reasoning Services

Subsumption vs. Satisfiability

Classification

General ABox Reasoning Services

Classification

Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Motivation

Basic Reasoning Services

General TBox Reasoning Services

Subsumption Subsumption vs Satisfiability

Classification

General ABox Reasoning Services

Classification

Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Motivation

Basic Reasoning Services

General TBox Reasoning Services

Subsumption Subsumption vs. Satisfiability

Classification

General ABox Reasoning Services

Classification

Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!

Example

Motivation

Basic Reasoning Services

General TBox Reasoning Services

Subsumption Subsumption vs. Satisfiability

Classification

General ABox Reasoning Services

Summary and Outlook

BURG

November 25, 2015

Nebel, Lindner, Engesser - KR&R

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability Instances Realization and Betrieval

Summary and Outlook

General ABox Reasoning Services

November 25, 2015

Nebel, Lindner, Engesser - KR&R

ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A} , does this set of assertions have a model?

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances Realization and Retrieval

ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A} , does this set of assertions have a model?

Notice: ABoxes representing the real world, should always have a model.

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Realization and Retrieval

ABox satisfiability

Satisfiability of an ABox

Given an ABox A, does this set of assertions have a model?

Notice: ABoxes representing the real world, should always have a model.

Example

The ABox

$$X: (\forall r. \neg C), Y: C, (X, Y): r$$

is not satisfiable.

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances Realization and Retrieval

Summary and Outlook

November 25, 2015

Nebel, Lindner, Engesser - KR&R

26/35

BURG

ABox satisfiability in a TBox

ABox satisfiability in a TBox

Given an ABox A and a TBox T, is A consistent with the terminology introduced in T, i.e., is $T \cup A$ satisfiable?

Example

If we extend our example with

MARGRET: Woman (DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Realization and Retrieval

Summary and Outlook

November 25, 2015

Nebel, Lindner, Engesser - KR&R

ABox satisfiability in a TBox

ABox satisfiability in a TBox

Given an ABox \mathcal{A} and a TBox \mathcal{T} , is \mathcal{A} consistent with the terminology introduced in \mathcal{T} , i.e., is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example

If we extend our example with

MARGRET: Woman (DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Problem is reducible to satisfiability of an ABox:
 ... normalize terminology, then unfold all concept and role descriptions in the ABox

Reasoning Services

Services

General ABox Reasoning Services

ABox Satisfiability

Realization and Retrieval

Summary and Outlook

27 / 35

BURG

Instance relations

Instance relations

Which additional ABox formulae of the form *a*: *C* follow logically from a given ABox and TBox?

- Is $a^{\mathcal{I}} \in C^{\mathcal{I}}$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula C(a) logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances

Realization and Retrieval

Instance relations

Instance relations

Which additional ABox formulae of the form *a*: *C* follow logically from a given ABox and TBox?

- Is $a^{\mathcal{I}} \in C^{\mathcal{I}}$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula C(a) logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:

Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances

Realization and Retrieval

Instance relations

Instance relations

Which additional ABox formulae of the form *a*: *C* follow logically from a given ABox and TBox?

- Is $a^{\mathcal{I}} \in C^{\mathcal{I}}$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula C(a) logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:

- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $a: C \text{ holds in } \mathcal{A} \iff \mathcal{A} \cup \{a: \neg C\} \text{ is unsatisfiable}$

November 25, 2015

Nebel, Lindner, Engesser – KR&R

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances

BURG

28/35

Realization and Retrieval

29/35

5

29/35

UNI FREIBURG

Motivation

Example

ELIZABETH: Mother-with-many-children?

```
■ WILLIAM: ¬ Female?
```

yes

ELIZABETH: Mother-without-daughter?

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances

Realization and Retrieval

Summary and Outlook

Example

ELIZABETH: Mother-with-many-children? yes

```
■ WILLIAM: ¬ Female?
```

yes

```
ELIZABETH: Mother-without-daughter?
no (no CWA!)
```

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances

Realization and Retrieval

Example

ELIZABETH: Mother-with-many-children? yes

```
■ WILLIAM: ¬ Female?
```

yes

- ELIZABETH: Mother-without-daughter? no (no CWA!)
 - ELIZABETH: Grandmother?

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances

Realization and Retrieval

Summary and Outlook

Example

ELIZABETH: Mother-with-many-children? yes

```
■ WILLIAM: ¬ Female?
```

yes

- ELIZABETH: Mother-without-daughter? no (no CWA!)
- ELIZABETH: Grandmother? no (only male, but not necessarily human!)

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability

Instances

Realization and Retrieval

Realization

Realization

For a given object *a*, determine the most specialized concept symbols such that *a* is an instance of these concepts

Motivation:

- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability Instances

Realization and Retrieval

Realization

For a given object *a*, determine the most specialized concept symbols such that *a* is an instance of these concepts

Motivation:

- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability Instances

Realization and Retrieval

Summary and Outlook

Retrieval

Retrieval

Given a concept description *C*, determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept Male. For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability Instances

Realization and Retrieval

Retrieval

Retrieval

Given a concept description *C*, determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept Male. For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- Reduction: Compute the set of instances by testing the instance relation for each object!
- Implementation: Realization can be used to speed this up

November 25, 2015

Nebel, Lindner, Engesser - KR&R

Motivation

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

ABox Satisfiability Instances

Realization and Retrieval

Summary and Outlook

BURG

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook

32/35

Summary and Outlook

Nebel, Lindner, Engesser - KR&R

Reasoning services – summary

- How to determine subsumption between two concept descriptions (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?

Basic Reasoning Services

General TBox Reasoning Services

General ABox Reasoning Services

