Principles of Knowledge Representation and Reasoning
Semantic Networks and Description Logics III: Description Logics – Reasoning Services and Reductions

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
November 25, 2015
Motivation
Example TBox & ABox

\[
\begin{align*}
\text{Male} & \equiv \neg \text{Female} \\
\text{Human} & \sqsubseteq \text{Living_entity} & \text{DIANA}: & \text{Woman} \\
\text{Woman} & \equiv \text{Human} \sqcap \neg \text{Female} & \text{ELIZABETH}: & \text{Woman} \\
\text{Man} & \equiv \text{Human} \sqcap \neg \text{Male} & \text{CHARLES}: & \text{Man} \\
\text{Mother} & \equiv \text{Woman} \sqcap \exists \text{has-child.Human} & \text{EDWARD}: & \text{Man} \\
\text{Father} & \equiv \text{Man} \sqcap \exists \text{has-child.Human} & \text{ANDREW}: & \text{Man} \\
\text{Parent} & \equiv \text{Father} \sqcup \text{Mother} & \text{DIANA}: & \text{Mother-without-daughter} \\
\text{Grandmother} & \equiv \text{Woman} \sqcap \exists \text{has-child.Parent} & (\text{ELIZABETH, CHARLES}): & \text{has-child} \\
\text{Mother-without-daughter} & \equiv \text{Mother} \sqcap \forall \text{has-child.Male} & (\text{ELIZABETH, EDWARD}): & \text{has-child} \\
\text{Mother-with-many-children} & \equiv \text{Mother} \sqcap (\geq 3 \text{has-child}) & (\text{ELIZABETH, ANDREW}): & \text{has-child} \\
& & (\text{DIANA, WILLIAM}): & \text{has-child} \\
& & (\text{CHARLES, WILLIAM}): & \text{has-child}
\end{align*}
\]
Motivation: Reasoning services

What do we want to know?

- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?

- Is concept X subsumed by concept Y?
- Is an object a an instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics. However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Basic Reasoning Services
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:

- Does there exist an interpretation I such that $C^I \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x\ C(x)$ satisfiable?
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:

- Does there exist an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \, C(x)$ satisfiable?

Example

$\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?
Satisfiability of concept descriptions in a TBox

Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?

Test:

- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \ C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?
Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?

Test:

- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?

- Translated into FOL: Is the formula $\exists x \ C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?

Example

Mother-without-daughter $\sqcap \forall$has-child.Female is unsatisfiable, given our previously specified family TBox.
Reduction: Getting rid of the TBox

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.
Reduction: Getting rid of the TBox

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:

- Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”.
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols.
- An expanded concept description is then satisfiable if and only if C is satisfiable in \mathcal{T}.
- **Problem**: What do we do with partial definitions (using \sqsubseteq)?
Normalized terminologies

- A terminology is called **normalized** when it does not contain definitions of the form $A \sqsubseteq C$.
- In order to **normalize** a terminology, replace

 $$A \sqsubseteq C$$

 by

 $$A \equiv A^* \sqcap C,$$

 where A^* is a **fresh** concept symbol (not appearing elsewhere in T).
- If T is a terminology, the normalized terminology is denoted by \tilde{T}.
Normalizing is reasonable

Theorem (Normalization invariance)

If \(I \) is a model of the terminology \(\mathcal{T} \), then there exists a model \(I' \) of \(\tilde{\mathcal{T}} \) such that for all concept symbols \(A \) occurring in \(\mathcal{T} \), it holds \(A^I = A^{I'} \), and vice versa.

Proof.

\(\Rightarrow \): Let \(I \) be a model of \(\mathcal{T} \). This model should be extended to \(I' \) so that the freshly introduced concept symbols also get interpretations.

\(\Leftarrow \): Given a model \(I' \) of \(\tilde{\mathcal{T}} \), its restriction to symbols of \(\mathcal{T} \) is the interpretation we look for.
Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^\mathcal{I} = A^{\mathcal{I}'}$, and vice versa.

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \models A^* \cap C) \in \tilde{\mathcal{T}}$.

November 25, 2015

Nebel, Lindner, Engesser – KR&R
Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^\mathcal{I} = A^{\mathcal{I}'}$, and vice versa.

Proof.

\Rightarrow: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \cap C) \in \tilde{\mathcal{T}}$. Then set $A^{\mathcal{I}'} := A^\mathcal{I}$.

"$\Leftarrow"$": Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.
Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^\mathcal{I} = A^{\mathcal{I}'}$, and vice versa.

Proof.

“⇒”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \cap C) \in \tilde{\mathcal{T}}$.

Then set $A^*_{\mathcal{I}'} := A^\mathcal{I}$.

\mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

Normalizing is reasonable

Theorem (Normalization invariance)

If I is a model of the terminology T, then there exists a model I' of \tilde{T} such that for all concept symbols A occurring in T, it holds $A^I = A^{I'}$, and vice versa.

Proof.

“\Rightarrow”: Let I be a model of T. This model should be extended to I' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in T$, i.e., we have $(A \models A^* \sqcap C) \in \tilde{T}$.

Then set $A^{I'} := A^I$.

I' obviously satisfies \tilde{T} and has the same interpretation for all symbols in T.

“\Leftarrow”: Given a model I' of \tilde{T}, its restriction to symbols of T is the interpretation we look for. □
TBox unfolding

- We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.

- **Example:** Mother ≡ Woman ⊓ ... is unfolded to Mother ≡ (Human ⊓ Female) ⊓ ...

We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding. We say that T is unfolded if $U(T) = T$. $U^n(T)$ is called the unfolding of T if $U^n(T) = U^{n+1}(T)$.

If such an unfolding exists, it is denoted by \hat{T}.
We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.

Example: Mother ⊑ Woman ⊓... is unfolded to Mother ⊑ (Human ⊓ Female) ⊓...

We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding.

We say that T is unfolded if $U(T) = T$.

$U^n(T)$ is called the unfolding of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \mathcal{T} can be unfolded, i.e., its unfolding $\hat{\mathcal{T}}$ exists.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \mathcal{T} can be unfolded, i.e., its unfolding $\hat{\mathcal{T}}$ exists.

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) if and only if it is a model of \(\hat{\mathcal{T}} \).
Theorem (Model equivalence for unfolded terminologies)

\(I \) is a model of a normalized terminology \(\overline{T} \) if and only if it is a model of \(\hat{T} \).

Proof sketch.

“⇒”: Let \(I \) be a model of \(T \).

[]{

\begin{itemize}
\item \(I \) is a model of \(T \).
\item \(I \) is also a model of \(\overline{T} \), since on the right side of the definitions only terms with identical interpretations are substituted.
\item \(I \) must also be a model of \(\hat{T} \).
\end{itemize}

“⇐”: Let \(I \) be a model for \(\overline{T} \). Clearly, this is also a model of \(T \) (with the same argument as above).

This means that any model \(\hat{T} \) is also a model of \(T \).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) if and only if it is a model of \(\hat{T} \).

Proof sketch.

\(\Rightarrow \): Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted.
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \mathcal{T} if and only if it is a model of $\hat{\mathcal{T}}$.

Proof sketch.

“\Rightarrow”: Let I be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.
Theorem (Model equivalence for unfolded terminologies)

\[I \text{ is a model of a normalized terminology } \mathcal{T} \text{ if and only if it is a model of } \mathcal{\hat{T}}. \]

Proof sketch.

\(\Rightarrow \): Let \(I \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\mathcal{\hat{T}} \).

\(\Leftarrow \): Let \(I \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) if and only if it is a model of \(\hat{\mathcal{T}} \).

Proof sketch.

\(\Rightarrow \): Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

\(\Leftarrow \): Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

*For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.***
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof idea.

Use \mathcal{T} and compute an interpretation for all defined symbols.
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{I} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T if and only if \hat{C} satisfiable in an empty terminology.
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) is satisfiable in a terminology \(T \) if and only if \(\hat{C} \) satisfiable in an empty terminology.

Proof.

“\(\Rightarrow \)”: trivial.
Unfolding of concept descriptions

Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.

We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \hat{C} satisfiable in an empty terminology.

Proof.

“\Rightarrow”: trivial.

“\Leftarrow”: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of \mathcal{T}.
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) is satisfiable in a terminology \(T \) if and only if \(\hat{C} \) satisfiable in an empty terminology.

Proof.

“\(\Rightarrow \)”: trivial.

“\(\Leftarrow \)”: Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(T \).
Then extend it to a full model \(\mathcal{I} \) of \(T \).
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T if and only if \hat{C} satisfiable in an empty terminology.

Proof.

"\Rightarrow": trivial.

"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T.
Then extend it to a full model I of T.
This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C. □
General TBox Reasoning Services
Subsumption in a TBox

Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} (symb. $C \sqsubseteq^\mathcal{T} D$)?

Test:

- Is C interpreted as a subset of D in each model \mathcal{I} of \mathcal{T}, i.e. $C^\mathcal{I} \subseteq D^\mathcal{I}$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} into FOL?
Subsumption in a TBox

Subsumption in a TBox

Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} (symb. $C \sqsubseteq_{\mathcal{T}} D$)?

Test:

- Is C interpreted as a subset of D in each model \mathcal{I} of \mathcal{T}, i.e. $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} into FOL?

Example

Given our family TBox, it holds Grandmother $\sqsubseteq_{\mathcal{T}}$ Mother.
Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?
Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?

Example

Clearly, Human \sqcap Female \sqsubseteq Human.
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:

 \[\text{normalize and unfold TBox and concept descriptions.} \]
Subsumption in a TBox can be reduced to subsumption in the empty TBox:
... normalize and unfold TBox and concept descriptions.

Subsumption in the empty TBox can be reduced to unsatisfiability:
... $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:

 ... normalize and unfold TBox and concept descriptions.

- Subsumption in the empty TBox can be reduced to unsatisfiability:

 ... $C \sqsubseteq D$ iff $C \cap \neg D$ is unsatisfiable.

- Unsatisfiability can be reduced to subsumption:

 ... C is unsatisfiable iff $C \sqsubseteq (C \cap \neg C)$.
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:
- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!

Example
General ABox Reasoning Services
ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

Notice: ABoxes representing the real world should always have a model.

Example: The ABox \mathcal{X}: ($\forall r. \neg C$), \mathcal{Y}: C, (\mathcal{X}, \mathcal{Y}) : r is not satisfiable.
ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

- **Notice**: ABoxes representing the real world, should always have a model.
ABox satisfiability

Satisfiability of an ABox

Given an ABox \(\mathcal{A} \), does this set of assertions have a model?

- **Notice**: ABoxes representing the real world, should always have a model.

Example

The ABox

\[
X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r
\]

is not satisfiable.
ABox satisfiability in a TBox

Given an ABox \(\mathcal{A} \) and a TBox \(\mathcal{T} \), is \(\mathcal{A} \) consistent with the terminology introduced in \(\mathcal{T} \), i.e., is \(\mathcal{T} \cup \mathcal{A} \) satisfiable?

Example

If we extend our example with

\[
\text{MARGRET: Woman} \\
(DIANA,MARGRET): \text{has-child},
\]

then the ABox becomes unsatisfiable in the given TBox.
ABox satisfiability in a TBox

Given an ABox \mathcal{A} and a TBox \mathcal{T}, is \mathcal{A} consistent with the terminology introduced in \mathcal{T}, i.e., is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example

If we extend our example with

\[
\text{MARGRET: Woman} \\
\text{ (DIANA,MARGRET): has-child,}
\]

then the ABox becomes unsatisfiable in the given TBox.

- Problem is reducible to satisfiability of an ABox:

 ... normalize terminology, then unfold all concept and role descriptions in the ABox
Instance relations

<table>
<thead>
<tr>
<th>Instance relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which additional ABox formulae of the form $a: C$ follow logically from a given ABox and TBox?</td>
</tr>
</tbody>
</table>

- Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?
Instance relations

Which additional ABox formulae of the form $a : C$ follow logically from a given ABox and TBox?

- Is $a^T \in C^T$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:

- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use **normalization** and **unfolding**
Instance relations

Which additional ABox formulae of the form $a : C$ follow logically from a given ABox and TBox?

- Is $a^T \in C^T$ true in all models I of $T \cup A$?
- Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?

Reductions:

- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

\[a : C \text{ holds in } A \iff A \cup \{a : \neg C\} \text{ is unsatisfiable} \]
Examples

Example

ELIZABETH: Mother-with-many-children?
Examples

Example

ELIZABETH: Mother-with-many-children?
yes
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes
- WILLIAM: ¬ Female?

Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: ⊬ Female?
 yes
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: ¬ Female?
 yes

- ELIZABETH: Mother-without-daughter?
Examples

Example

- ELIZABETH: Mother-with-many-children?
 - yes

- WILLIAM: ¬ Female?
 - yes

- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)
Examples

ELIZABETH: Mother-with-many-children?
- yes

WILLIAM: ¬ Female?
- yes

ELIZABETH: Mother-without-daughter?
- no (no CWA!)

ELIZABETH: Grandmother?
- no (only male, but not necessarily human!)
Examples

Example

- **ELIZABETH:** Mother-with-many-children?
 - yes

- **WILLIAM:** ¬ Female?
 - yes

- **ELIZABETH:** Mother-without-daughter?
 - no (no CWA!)

- **ELIZABETH:** Grandmother?
 - no (only male, but not necessarily human!)
Realization

For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:

- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!
Realization

For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:

- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Retrieval

Given a concept description C, determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept Male. For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.
Retrieval

Given a concept description C, determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept Male. For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- **Reduction**: Compute the set of instances by testing the instance relation for each object!
- **Implementation**: Realization can be used to speed this up
Summary and Outlook
Reasoning services – summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

- How to determine subsumption between two concept descriptions (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?