
Principles of
Knowledge Representation and Reasoning
Semantic Networks and Description Logics I:
Simple, Strict Inheritance Networks

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
November 16, 2015



Introduction
Motivation

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Introduction

November 16, 2015 Nebel, Lindner, Engesser – KR&R 2 / 31



Introduction
Motivation

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Terminological reasoning

Often, we need to use semantic (conceptual,
terminological) knowledge . . .
For example, consider a knowledge base that classifies
things into different categories, which in turn may be
organized in some hierarchical way
Task: Query objects that belong to a specific category or
one of its super categories . . .
Even more involved: Answer queries of users of the
knowledge base who are not aware of the internal
categories of the knowledge base

Topic of this section: a naïve (maybe too naïve) approach to
reasoning with terminological knowledge, namely
inheritance networks

November 16, 2015 Nebel, Lindner, Engesser – KR&R 4 / 31



Introduction
Motivation

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Intuition

Definition
A strict inheritance network is defined by a set of nodes
(representing concepts, properties) and a set of directed edges
(representing generalization, the is-a-relation).

Professor

Grad−Student

knowledgeablestudious Person

Student

Student
Undergrad−

Reasoning problem: Is some concept C a specialization (a
subconcept) of another concept C′?
. . . and how can we solve this problem efficiently?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 5 / 31



Introduction
Motivation

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Intuition

Definition
A strict inheritance network is defined by a set of nodes
(representing concepts, properties) and a set of directed edges
(representing generalization, the is-a-relation).

Professor

Grad−Student

knowledgeablestudious Person

Student

Student
Undergrad−

Reasoning problem: Is some concept C a specialization (a
subconcept) of another concept C′?
. . . and how can we solve this problem efficiently?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 5 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A simple network formalism

November 16, 2015 Nebel, Lindner, Engesser – KR&R 6 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Networks as formula sets

A strict inheritance network can be seen as a set Θ of formulae
of the form

C1 isa C2.

Example

Student isa Person

Student isa studious

Professor isa Person

Professor isa knowledgeable

Grad-Student isa Student

Undergrad-Student isa Student

Reasoning problem (inheritance problem): Θ |= C1 isa C2?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 8 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Networks as formula sets

A strict inheritance network can be seen as a set Θ of formulae
of the form

C1 isa C2.

Example

Student isa Person

Student isa studious

Professor isa Person

Professor isa knowledgeable

Grad-Student isa Student

Undergrad-Student isa Student

Reasoning problem (inheritance problem): Θ |= C1 isa C2?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 8 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Networks as formula sets

A strict inheritance network can be seen as a set Θ of formulae
of the form

C1 isa C2.

Example

Student isa Person

Student isa studious

Professor isa Person

Professor isa knowledgeable

Grad-Student isa Student

Undergrad-Student isa Student

Reasoning problem (inheritance problem): Θ |= C1 isa C2?
November 16, 2015 Nebel, Lindner, Engesser – KR&R 8 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Logical semantics

We assign the following logical semantics to isa-formulae:

C1 isa C2 7→ ∀x.C1(x) → C2(x)

. . . i.e., we interpret each directed edge or isa-formula as a
universally quantified implication.
This is intuitively plausible: each instance of a sub-concept
is an instance of the super-concept.
Now we can reduce the inheritance problem as follows:
Let π(Θ) be the translation. Then we want to know:

π(Θ) |= ∀x.C1(x) → C2(x)?

How hard is this problem?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 9 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Logical semantics

We assign the following logical semantics to isa-formulae:

C1 isa C2 7→ ∀x.C1(x) → C2(x)

. . . i.e., we interpret each directed edge or isa-formula as a
universally quantified implication.

This is intuitively plausible: each instance of a sub-concept
is an instance of the super-concept.
Now we can reduce the inheritance problem as follows:
Let π(Θ) be the translation. Then we want to know:

π(Θ) |= ∀x.C1(x) → C2(x)?

How hard is this problem?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 9 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Logical semantics

We assign the following logical semantics to isa-formulae:

C1 isa C2 7→ ∀x.C1(x) → C2(x)

. . . i.e., we interpret each directed edge or isa-formula as a
universally quantified implication.
This is intuitively plausible: each instance of a sub-concept
is an instance of the super-concept.

Now we can reduce the inheritance problem as follows:
Let π(Θ) be the translation. Then we want to know:

π(Θ) |= ∀x.C1(x) → C2(x)?

How hard is this problem?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 9 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Logical semantics

We assign the following logical semantics to isa-formulae:

C1 isa C2 7→ ∀x.C1(x) → C2(x)

. . . i.e., we interpret each directed edge or isa-formula as a
universally quantified implication.
This is intuitively plausible: each instance of a sub-concept
is an instance of the super-concept.
Now we can reduce the inheritance problem as follows:
Let π(Θ) be the translation. Then we want to know:

π(Θ) |= ∀x.C1(x) → C2(x)?

How hard is this problem?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 9 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Logical semantics

We assign the following logical semantics to isa-formulae:

C1 isa C2 7→ ∀x.C1(x) → C2(x)

. . . i.e., we interpret each directed edge or isa-formula as a
universally quantified implication.
This is intuitively plausible: each instance of a sub-concept
is an instance of the super-concept.
Now we can reduce the inheritance problem as follows:
Let π(Θ) be the translation. Then we want to know:

π(Θ) |= ∀x.C1(x) → C2(x)?

How hard is this problem?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 9 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A polynomial reasoning algorithm

Let GΘ be the graph corresponding to Θ. Then we have:

π(Θ) |= ∀x.C1(x) → C2(x)

iff
there exists a path in GΘ from C1 to C2.

. . .which has to be proven (next slides).
Thus, we have reduced reasoning in strict inheritance
networks to graph reachability problem, which is solvable in
polynomial time.
Note: Reasoning is not simple because we used a graph to
represent the knowledge (there are actually very difficult
graph problems),
. . . reasoning is simple because the expressiveness
compared with first-order logic is very restricted.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 10 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A polynomial reasoning algorithm

Let GΘ be the graph corresponding to Θ. Then we have:

π(Θ) |= ∀x.C1(x) → C2(x)

iff
there exists a path in GΘ from C1 to C2.

. . .which has to be proven (next slides).

Thus, we have reduced reasoning in strict inheritance
networks to graph reachability problem, which is solvable in
polynomial time.
Note: Reasoning is not simple because we used a graph to
represent the knowledge (there are actually very difficult
graph problems),
. . . reasoning is simple because the expressiveness
compared with first-order logic is very restricted.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 10 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A polynomial reasoning algorithm

Let GΘ be the graph corresponding to Θ. Then we have:

π(Θ) |= ∀x.C1(x) → C2(x)

iff
there exists a path in GΘ from C1 to C2.

. . .which has to be proven (next slides).
Thus, we have reduced reasoning in strict inheritance
networks to graph reachability problem, which is solvable in
polynomial time.

Note: Reasoning is not simple because we used a graph to
represent the knowledge (there are actually very difficult
graph problems),
. . . reasoning is simple because the expressiveness
compared with first-order logic is very restricted.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 10 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A polynomial reasoning algorithm

Let GΘ be the graph corresponding to Θ. Then we have:

π(Θ) |= ∀x.C1(x) → C2(x)

iff
there exists a path in GΘ from C1 to C2.

. . .which has to be proven (next slides).
Thus, we have reduced reasoning in strict inheritance
networks to graph reachability problem, which is solvable in
polynomial time.
Note: Reasoning is not simple because we used a graph to
represent the knowledge (there are actually very difficult
graph problems),

. . . reasoning is simple because the expressiveness
compared with first-order logic is very restricted.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 10 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A polynomial reasoning algorithm

Let GΘ be the graph corresponding to Θ. Then we have:

π(Θ) |= ∀x.C1(x) → C2(x)

iff
there exists a path in GΘ from C1 to C2.

. . .which has to be proven (next slides).
Thus, we have reduced reasoning in strict inheritance
networks to graph reachability problem, which is solvable in
polynomial time.
Note: Reasoning is not simple because we used a graph to
represent the knowledge (there are actually very difficult
graph problems),
. . . reasoning is simple because the expressiveness
compared with first-order logic is very restricted.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 10 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Soundness

Theorem (Soundness of inheritance reasoning)

If there exists a path from C1 to C2 in GΘ, then

π(Θ) |= ∀x.C1(x) → C2(x).

Proof.
If there is a path, then there exists a chain of implications of the form
∀x.Dj(x) → Dj+1(x) with D0 = C1 and Dn = C2.
Since logical implication is transitive, the claim follows trivially.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 11 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Soundness

Theorem (Soundness of inheritance reasoning)

If there exists a path from C1 to C2 in GΘ, then

π(Θ) |= ∀x.C1(x) → C2(x).

Proof.
If there is a path, then there exists a chain of implications of the form
∀x.Dj(x) → Dj+1(x) with D0 = C1 and Dn = C2.
Since logical implication is transitive, the claim follows trivially.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 11 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Completeness

Theorem (Completeness of inheritance reasoning)

If π(Θ) |= ∀x.C1(x) → C2(x), then there exists a path from C1 to
C2 in GΘ.

Proof.
We prove the contraposition.
Assume that there exists no such path from C1 to C2 in GΘ. We show
that π(Θ) 6|= ∀x.C1(x) → C2(x).
For this define an interpretation on a universe with exactly one element
d such that d is in the interpretation of C1 and in the interpretation of all
concepts reachable from C1 by following directed edges (and not in the
interpretation of any other concept).
This interpretation satisfies all formulae in π(Θ).
However, it does not satisfy ∀x.C1(x) → C2(x).
For this reason, we have π(Θ) 6|= ∀x.C1(x) → C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 12 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Completeness

Theorem (Completeness of inheritance reasoning)

If π(Θ) |= ∀x.C1(x) → C2(x), then there exists a path from C1 to
C2 in GΘ.

Proof.
We prove the contraposition.

Assume that there exists no such path from C1 to C2 in GΘ. We show
that π(Θ) 6|= ∀x.C1(x) → C2(x).
For this define an interpretation on a universe with exactly one element
d such that d is in the interpretation of C1 and in the interpretation of all
concepts reachable from C1 by following directed edges (and not in the
interpretation of any other concept).
This interpretation satisfies all formulae in π(Θ).
However, it does not satisfy ∀x.C1(x) → C2(x).
For this reason, we have π(Θ) 6|= ∀x.C1(x) → C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 12 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Completeness

Theorem (Completeness of inheritance reasoning)

If π(Θ) |= ∀x.C1(x) → C2(x), then there exists a path from C1 to
C2 in GΘ.

Proof.
We prove the contraposition.
Assume that there exists no such path from C1 to C2 in GΘ. We show
that π(Θ) 6|= ∀x.C1(x) → C2(x).

For this define an interpretation on a universe with exactly one element
d such that d is in the interpretation of C1 and in the interpretation of all
concepts reachable from C1 by following directed edges (and not in the
interpretation of any other concept).
This interpretation satisfies all formulae in π(Θ).
However, it does not satisfy ∀x.C1(x) → C2(x).
For this reason, we have π(Θ) 6|= ∀x.C1(x) → C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 12 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Completeness

Theorem (Completeness of inheritance reasoning)

If π(Θ) |= ∀x.C1(x) → C2(x), then there exists a path from C1 to
C2 in GΘ.

Proof.
We prove the contraposition.
Assume that there exists no such path from C1 to C2 in GΘ. We show
that π(Θ) 6|= ∀x.C1(x) → C2(x).
For this define an interpretation on a universe with exactly one element
d such that d is in the interpretation of C1 and in the interpretation of all
concepts reachable from C1 by following directed edges (and not in the
interpretation of any other concept).

This interpretation satisfies all formulae in π(Θ).
However, it does not satisfy ∀x.C1(x) → C2(x).
For this reason, we have π(Θ) 6|= ∀x.C1(x) → C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 12 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Completeness

Theorem (Completeness of inheritance reasoning)

If π(Θ) |= ∀x.C1(x) → C2(x), then there exists a path from C1 to
C2 in GΘ.

Proof.
We prove the contraposition.
Assume that there exists no such path from C1 to C2 in GΘ. We show
that π(Θ) 6|= ∀x.C1(x) → C2(x).
For this define an interpretation on a universe with exactly one element
d such that d is in the interpretation of C1 and in the interpretation of all
concepts reachable from C1 by following directed edges (and not in the
interpretation of any other concept).
This interpretation satisfies all formulae in π(Θ).

However, it does not satisfy ∀x.C1(x) → C2(x).
For this reason, we have π(Θ) 6|= ∀x.C1(x) → C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 12 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Completeness

Theorem (Completeness of inheritance reasoning)

If π(Θ) |= ∀x.C1(x) → C2(x), then there exists a path from C1 to
C2 in GΘ.

Proof.
We prove the contraposition.
Assume that there exists no such path from C1 to C2 in GΘ. We show
that π(Θ) 6|= ∀x.C1(x) → C2(x).
For this define an interpretation on a universe with exactly one element
d such that d is in the interpretation of C1 and in the interpretation of all
concepts reachable from C1 by following directed edges (and not in the
interpretation of any other concept).
This interpretation satisfies all formulae in π(Θ).
However, it does not satisfy ∀x.C1(x) → C2(x).

For this reason, we have π(Θ) 6|= ∀x.C1(x) → C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 12 / 31



Introduction

A simple
network
formalism
Semantics

A polynomial
inheritance
algorithm

Soundness &
Completeness

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Completeness

Theorem (Completeness of inheritance reasoning)

If π(Θ) |= ∀x.C1(x) → C2(x), then there exists a path from C1 to
C2 in GΘ.

Proof.
We prove the contraposition.
Assume that there exists no such path from C1 to C2 in GΘ. We show
that π(Θ) 6|= ∀x.C1(x) → C2(x).
For this define an interpretation on a universe with exactly one element
d such that d is in the interpretation of C1 and in the interpretation of all
concepts reachable from C1 by following directed edges (and not in the
interpretation of any other concept).
This interpretation satisfies all formulae in π(Θ).
However, it does not satisfy ∀x.C1(x) → C2(x).
For this reason, we have π(Θ) 6|= ∀x.C1(x) → C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 12 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Semantic Networks with
Instances

November 16, 2015 Nebel, Lindner, Engesser – KR&R 13 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

An extension: instances

We also want to talk about instances of concepts.
Example:

BernhardJohn

Professor

Grad−Student

Undergrad−
Student

knowledgeablestudious Person

Student

. . . as formulae:
...

John inst-of Undergrad-Student

Bernhard inst-of Professor

November 16, 2015 Nebel, Lindner, Engesser – KR&R 15 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

An extension: instances

We also want to talk about instances of concepts.
Example:

BernhardJohn

Professor

Grad−Student

Undergrad−
Student

knowledgeablestudious Person

Student

. . . as formulae:
...

John inst-of Undergrad-Student

Bernhard inst-of Professor

November 16, 2015 Nebel, Lindner, Engesser – KR&R 15 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Extension of the semantics

Logical semantics:

i inst-of C 7→ C(i).

Problem 1: Is this extension of the language conservative?
That is, can we still decide Θ |= C1 isa C2 without taking
formulae of the form i inst-of C into account?
yes (but has to be shown)

Problem 2: Is it true: Θ |= i inst-of C if and only if there is a
path from the node i to the node C in GΘ?
yes (has to be shown)

This means, we can also use efficient graph algorithms for
this extension.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 16 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Extension of the semantics

Logical semantics:

i inst-of C 7→ C(i).

Problem 1: Is this extension of the language conservative?
That is, can we still decide Θ |= C1 isa C2 without taking
formulae of the form i inst-of C into account?

yes (but has to be shown)

Problem 2: Is it true: Θ |= i inst-of C if and only if there is a
path from the node i to the node C in GΘ?
yes (has to be shown)

This means, we can also use efficient graph algorithms for
this extension.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 16 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Extension of the semantics

Logical semantics:

i inst-of C 7→ C(i).

Problem 1: Is this extension of the language conservative?
That is, can we still decide Θ |= C1 isa C2 without taking
formulae of the form i inst-of C into account?
yes (but has to be shown)

Problem 2: Is it true: Θ |= i inst-of C if and only if there is a
path from the node i to the node C in GΘ?
yes (has to be shown)

This means, we can also use efficient graph algorithms for
this extension.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 16 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Extension of the semantics

Logical semantics:

i inst-of C 7→ C(i).

Problem 1: Is this extension of the language conservative?
That is, can we still decide Θ |= C1 isa C2 without taking
formulae of the form i inst-of C into account?
yes (but has to be shown)

Problem 2: Is it true: Θ |= i inst-of C if and only if there is a
path from the node i to the node C in GΘ?

yes (has to be shown)

This means, we can also use efficient graph algorithms for
this extension.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 16 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Extension of the semantics

Logical semantics:

i inst-of C 7→ C(i).

Problem 1: Is this extension of the language conservative?
That is, can we still decide Θ |= C1 isa C2 without taking
formulae of the form i inst-of C into account?
yes (but has to be shown)

Problem 2: Is it true: Θ |= i inst-of C if and only if there is a
path from the node i to the node C in GΘ?
yes (has to be shown)

This means, we can also use efficient graph algorithms for
this extension.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 16 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Extension of the semantics

Logical semantics:

i inst-of C 7→ C(i).

Problem 1: Is this extension of the language conservative?
That is, can we still decide Θ |= C1 isa C2 without taking
formulae of the form i inst-of C into account?
yes (but has to be shown)

Problem 2: Is it true: Θ |= i inst-of C if and only if there is a
path from the node i to the node C in GΘ?
yes (has to be shown)

This means, we can also use efficient graph algorithms for
this extension.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 16 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Semantic Networks with
Negation

November 16, 2015 Nebel, Lindner, Engesser – KR&R 17 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

A further extension: negated concepts

We now allow for negated concepts, i.e, concept terms of the
form

notC,

where C is a concept name (an atomic concept).

Example

Undergrad-Student isa not Grad-Student

Logical semantics:
notC 7→ ¬C(x)

Example

C1 isa notC2 7→ ∀x.C1(x) →¬C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 19 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

A further extension: negated concepts

We now allow for negated concepts, i.e, concept terms of the
form

notC,

where C is a concept name (an atomic concept).

Example

Undergrad-Student isa not Grad-Student

Logical semantics:
notC 7→ ¬C(x)

Example

C1 isa notC2 7→ ∀x.C1(x) →¬C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 19 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

A further extension: negated concepts

We now allow for negated concepts, i.e, concept terms of the
form

notC,

where C is a concept name (an atomic concept).

Example

Undergrad-Student isa not Grad-Student

Logical semantics:
notC 7→ ¬C(x)

Example

C1 isa notC2 7→ ∀x.C1(x) →¬C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 19 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

A further extension: negated concepts

We now allow for negated concepts, i.e, concept terms of the
form

notC,

where C is a concept name (an atomic concept).

Example

Undergrad-Student isa not Grad-Student

Logical semantics:
notC 7→ ¬C(x)

Example

C1 isa notC2 7→ ∀x.C1(x) →¬C2(x).

November 16, 2015 Nebel, Lindner, Engesser – KR&R 19 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Complementing an inheritance network

Define α :

α :=

{
notC if α = C
C if α = notC

Construct GΘ from Θ as follows:

For each concept name C, we will have two nodes: C and
notC.
For each formula α1 isa α2, we introduce the following two
edges:

α1 → α2

α2 → α1

November 16, 2015 Nebel, Lindner, Engesser – KR&R 20 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Complementing an inheritance network

Define α :

α :=

{
notC if α = C
C if α = notC

Construct GΘ from Θ as follows:
For each concept name C, we will have two nodes: C and
notC.

For each formula α1 isa α2, we introduce the following two
edges:

α1 → α2

α2 → α1

November 16, 2015 Nebel, Lindner, Engesser – KR&R 20 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Complementing an inheritance network

Define α :

α :=

{
notC if α = C
C if α = notC

Construct GΘ from Θ as follows:
For each concept name C, we will have two nodes: C and
notC.
For each formula α1 isa α2, we introduce the following two
edges:

α1 → α2

α2 → α1

November 16, 2015 Nebel, Lindner, Engesser – KR&R 20 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Example

Θ = {A isa not B, P isa A, P isa B, Q isa R, R isa not A}

not

not

not

not not

A

P

B

Q

R

Q

R

P

B A

November 16, 2015 Nebel, Lindner, Engesser – KR&R 21 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Satisfiability of an inheritance network

Strict inheritance networks without negation are always
satisfiable, i.e., they have a non-empty model (which one?)

This is no longer true when we allow for negated concepts.
Consider:

P isa not P, not P isa P

means

∀x.P(x) →¬P(x), ∀x.¬P(x) → P(x),

which is equivalent to

∀x.¬P(x), ∀x.P(x).

. . . i.e., this set of formulae is not satisfiable, symb. Θ |= ⊥.
This is important to find out since in this case everything
follows.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 22 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Satisfiability of an inheritance network

Strict inheritance networks without negation are always
satisfiable, i.e., they have a non-empty model (which one?)
This is no longer true when we allow for negated concepts.
Consider:

P isa not P, not P isa P

means

∀x.P(x) →¬P(x), ∀x.¬P(x) → P(x),

which is equivalent to

∀x.¬P(x), ∀x.P(x).

. . . i.e., this set of formulae is not satisfiable, symb. Θ |= ⊥.
This is important to find out since in this case everything
follows.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 22 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Satisfiability of an inheritance network

Strict inheritance networks without negation are always
satisfiable, i.e., they have a non-empty model (which one?)
This is no longer true when we allow for negated concepts.
Consider:

P isa not P, not P isa P

means

∀x.P(x) →¬P(x), ∀x.¬P(x) → P(x),

which is equivalent to

∀x.¬P(x), ∀x.P(x).

. . . i.e., this set of formulae is not satisfiable, symb. Θ |= ⊥.

This is important to find out since in this case everything
follows.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 22 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Satisfiability of an inheritance network

Strict inheritance networks without negation are always
satisfiable, i.e., they have a non-empty model (which one?)
This is no longer true when we allow for negated concepts.
Consider:

P isa not P, not P isa P

means

∀x.P(x) →¬P(x), ∀x.¬P(x) → P(x),

which is equivalent to

∀x.¬P(x), ∀x.P(x).

. . . i.e., this set of formulae is not satisfiable, symb. Θ |= ⊥.
This is important to find out since in this case everything
follows.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 22 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Deciding satisfiability

Theorem (Satisfiability of strict networks with negation)

Θ |= ⊥ if and only if the graph GΘ contains a cycle from α to α

and back to α .

Proof.
⇐: Adding α2 → α1 corresponds to adding

∀x.¬α2(x) →¬α1(x)

when ∀x.α1(x) → α2(x) is given. This is logically correct
(contraposition). Since all directed paths in GΘ correspond to
universally quantified implications that can be deduced from π(Θ), a
cycle as in the theorem implies:

∀x.α(x) → α(x), ∀x.α(x) → α(x).

This, however, is unsatisfiable.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 23 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Deciding satisfiability

Theorem (Satisfiability of strict networks with negation)

Θ |= ⊥ if and only if the graph GΘ contains a cycle from α to α

and back to α .

Proof.
⇐: Adding α2 → α1 corresponds to adding

∀x.¬α2(x) →¬α1(x)

when ∀x.α1(x) → α2(x) is given. This is logically correct
(contraposition).

Since all directed paths in GΘ correspond to
universally quantified implications that can be deduced from π(Θ), a
cycle as in the theorem implies:

∀x.α(x) → α(x), ∀x.α(x) → α(x).

This, however, is unsatisfiable.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 23 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Deciding satisfiability

Theorem (Satisfiability of strict networks with negation)

Θ |= ⊥ if and only if the graph GΘ contains a cycle from α to α

and back to α .

Proof.
⇐: Adding α2 → α1 corresponds to adding

∀x.¬α2(x) →¬α1(x)

when ∀x.α1(x) → α2(x) is given. This is logically correct
(contraposition). Since all directed paths in GΘ correspond to
universally quantified implications that can be deduced from π(Θ), a
cycle as in the theorem implies:

∀x.α(x) → α(x), ∀x.α(x) → α(x).

This, however, is unsatisfiable.
November 16, 2015 Nebel, Lindner, Engesser – KR&R 23 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Proof – continued

Proof (cont’d).

⇒: We have to show that unsatisfiability of Θ implies the existence of
a cycle from some node α to α and back to α in GΘ.

We prove the contraposition, i.e. that the absence of any such cycle
implies satisfiability.
We start with the universe D = {d} and then construct step-wise an
interpretation for all concepts.
Convention: Whenever we assign αI = {d}, then we assign α

I = /0.
1 Choose an α without an interpretation that has no path to α .
2 Assign αI = {d} and continue to do that for all concepts β

reachable from α that do not have an interpretation.
3 Continue until all concepts have an interpretation.

If there is still a concept without an interpretation, we always can find
one satisfying the condition in step 1 since there is no cycle.
In step 2, no concept reachable from α can have an empty
interpretation, so the assignment does not violate any subconcept
relations.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 24 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Proof – continued

Proof (cont’d).

⇒: We have to show that unsatisfiability of Θ implies the existence of
a cycle from some node α to α and back to α in GΘ.
We prove the contraposition, i.e. that the absence of any such cycle
implies satisfiability.

We start with the universe D = {d} and then construct step-wise an
interpretation for all concepts.
Convention: Whenever we assign αI = {d}, then we assign α

I = /0.
1 Choose an α without an interpretation that has no path to α .
2 Assign αI = {d} and continue to do that for all concepts β

reachable from α that do not have an interpretation.
3 Continue until all concepts have an interpretation.

If there is still a concept without an interpretation, we always can find
one satisfying the condition in step 1 since there is no cycle.
In step 2, no concept reachable from α can have an empty
interpretation, so the assignment does not violate any subconcept
relations.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 24 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Proof – continued

Proof (cont’d).

⇒: We have to show that unsatisfiability of Θ implies the existence of
a cycle from some node α to α and back to α in GΘ.
We prove the contraposition, i.e. that the absence of any such cycle
implies satisfiability.
We start with the universe D = {d} and then construct step-wise an
interpretation for all concepts.

Convention: Whenever we assign αI = {d}, then we assign α
I = /0.

1 Choose an α without an interpretation that has no path to α .
2 Assign αI = {d} and continue to do that for all concepts β

reachable from α that do not have an interpretation.
3 Continue until all concepts have an interpretation.

If there is still a concept without an interpretation, we always can find
one satisfying the condition in step 1 since there is no cycle.
In step 2, no concept reachable from α can have an empty
interpretation, so the assignment does not violate any subconcept
relations.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 24 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Proof – continued

Proof (cont’d).

⇒: We have to show that unsatisfiability of Θ implies the existence of
a cycle from some node α to α and back to α in GΘ.
We prove the contraposition, i.e. that the absence of any such cycle
implies satisfiability.
We start with the universe D = {d} and then construct step-wise an
interpretation for all concepts.
Convention: Whenever we assign αI = {d}, then we assign α

I = /0.

1 Choose an α without an interpretation that has no path to α .
2 Assign αI = {d} and continue to do that for all concepts β

reachable from α that do not have an interpretation.
3 Continue until all concepts have an interpretation.

If there is still a concept without an interpretation, we always can find
one satisfying the condition in step 1 since there is no cycle.
In step 2, no concept reachable from α can have an empty
interpretation, so the assignment does not violate any subconcept
relations.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 24 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Proof – continued

Proof (cont’d).

⇒: We have to show that unsatisfiability of Θ implies the existence of
a cycle from some node α to α and back to α in GΘ.
We prove the contraposition, i.e. that the absence of any such cycle
implies satisfiability.
We start with the universe D = {d} and then construct step-wise an
interpretation for all concepts.
Convention: Whenever we assign αI = {d}, then we assign α

I = /0.
1 Choose an α without an interpretation that has no path to α .
2 Assign αI = {d} and continue to do that for all concepts β

reachable from α that do not have an interpretation.
3 Continue until all concepts have an interpretation.

If there is still a concept without an interpretation, we always can find
one satisfying the condition in step 1 since there is no cycle.
In step 2, no concept reachable from α can have an empty
interpretation, so the assignment does not violate any subconcept
relations.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 24 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Proof – continued

Proof (cont’d).

⇒: We have to show that unsatisfiability of Θ implies the existence of
a cycle from some node α to α and back to α in GΘ.
We prove the contraposition, i.e. that the absence of any such cycle
implies satisfiability.
We start with the universe D = {d} and then construct step-wise an
interpretation for all concepts.
Convention: Whenever we assign αI = {d}, then we assign α

I = /0.
1 Choose an α without an interpretation that has no path to α .
2 Assign αI = {d} and continue to do that for all concepts β

reachable from α that do not have an interpretation.
3 Continue until all concepts have an interpretation.

If there is still a concept without an interpretation, we always can find
one satisfying the condition in step 1 since there is no cycle.

In step 2, no concept reachable from α can have an empty
interpretation, so the assignment does not violate any subconcept
relations.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 24 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

Proof – continued

Proof (cont’d).

⇒: We have to show that unsatisfiability of Θ implies the existence of
a cycle from some node α to α and back to α in GΘ.
We prove the contraposition, i.e. that the absence of any such cycle
implies satisfiability.
We start with the universe D = {d} and then construct step-wise an
interpretation for all concepts.
Convention: Whenever we assign αI = {d}, then we assign α

I = /0.
1 Choose an α without an interpretation that has no path to α .
2 Assign αI = {d} and continue to do that for all concepts β

reachable from α that do not have an interpretation.
3 Continue until all concepts have an interpretation.

If there is still a concept without an interpretation, we always can find
one satisfying the condition in step 1 since there is no cycle.
In step 2, no concept reachable from α can have an empty
interpretation, so the assignment does not violate any subconcept
relations.November 16, 2015 Nebel, Lindner, Engesser – KR&R 24 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

isa-Reasoning

Theorem (Inheritance in strict networks with negation)

Θ |= α1 isa α2 if and only if one of the following conditions is
satisfied:

1 Θ |= ⊥.
2 There is a path from α1 to α1 in GΘ.
3 There is a path from α2 to α2 in GΘ.
4 There is a path from α1 to α2 in GΘ.

Proof (sketch).

Soundness is obvious.

Completeness can be shown using the same argument that we used
for completeness of the Satisfiability Theorem and the fact that we can
start the construction process with α1

I = {d} and α2
I = {d}.

 What about instance-relationship reasoning?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 25 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

isa-Reasoning

Theorem (Inheritance in strict networks with negation)

Θ |= α1 isa α2 if and only if one of the following conditions is
satisfied:

1 Θ |= ⊥.
2 There is a path from α1 to α1 in GΘ.
3 There is a path from α2 to α2 in GΘ.
4 There is a path from α1 to α2 in GΘ.

Proof (sketch).

Soundness is obvious.
Completeness can be shown using the same argument that we used
for completeness of the Satisfiability Theorem and the fact that we can
start the construction process with α1

I = {d} and α2
I = {d}.

 What about instance-relationship reasoning?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 25 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation
Satisfiability of a
Semantic Network

Reasoning

Semantic
Networks with
Negation and
Conjunction

Literature

isa-Reasoning

Theorem (Inheritance in strict networks with negation)

Θ |= α1 isa α2 if and only if one of the following conditions is
satisfied:

1 Θ |= ⊥.
2 There is a path from α1 to α1 in GΘ.
3 There is a path from α2 to α2 in GΘ.
4 There is a path from α1 to α2 in GΘ.

Proof (sketch).

Soundness is obvious.
Completeness can be shown using the same argument that we used
for completeness of the Satisfiability Theorem and the fact that we can
start the construction process with α1

I = {d} and α2
I = {d}.

 What about instance-relationship reasoning?November 16, 2015 Nebel, Lindner, Engesser – KR&R 25 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Semantic Networks with
Negation and Conjunction

November 16, 2015 Nebel, Lindner, Engesser – KR&R 26 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A final extension: conjunctions and negation

A concept description is a concept name (C), a negation of a
concept name (notC) or the conjunction of concept descriptions
(α1 and α2).

Example

(Student and not Grad-Student) isa Undergrad-Student

(Woman and Parent) isa Mother

Logical semantics is obvious!

Is it still possible to decide inheritance in polynomial time?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 28 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

A final extension: conjunctions and negation

A concept description is a concept name (C), a negation of a
concept name (notC) or the conjunction of concept descriptions
(α1 and α2).

Example

(Student and not Grad-Student) isa Undergrad-Student

(Woman and Parent) isa Mother

Logical semantics is obvious!
Is it still possible to decide inheritance in polynomial time?

November 16, 2015 Nebel, Lindner, Engesser – KR&R 28 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Computational complexity

Theorem (Complexity of strict inheritance with negation
and conjunction)

The reasoning problem for strict inheritance networks with
conjunction and negation is coNP-complete.

Proof (sketch).
We show hardness by a reduction from 3SAT.

Let D= C1∧ . . .∧Cn be formula in CNF with exactly three literals per clause
(over atoms ai ).
Let σ(Cj) be the following translation:

a1∨a2∨a3 7→ (nota1 and nota2) isa a3
¬a1∨a2∨a3 7→ (a1 and nota2) isa a3

¬a1∨¬a2∨a3 7→ (a1 anda2) isa a3
¬a1∨¬a2∨¬a3 7→ (a1 anda2) isa (nota3)

Extend σ to CNF formulae, and show that D is unsatisfiable iff σ(D) |=⊥.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 29 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Computational complexity

Theorem (Complexity of strict inheritance with negation
and conjunction)

The reasoning problem for strict inheritance networks with
conjunction and negation is coNP-complete.

Proof (sketch).
We show hardness by a reduction from 3SAT.
Let D= C1∧ . . .∧Cn be formula in CNF with exactly three literals per clause
(over atoms ai ).

Let σ(Cj) be the following translation:
a1∨a2∨a3 7→ (nota1 and nota2) isa a3

¬a1∨a2∨a3 7→ (a1 and nota2) isa a3
¬a1∨¬a2∨a3 7→ (a1 anda2) isa a3

¬a1∨¬a2∨¬a3 7→ (a1 anda2) isa (nota3)

Extend σ to CNF formulae, and show that D is unsatisfiable iff σ(D) |=⊥.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 29 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Computational complexity

Theorem (Complexity of strict inheritance with negation
and conjunction)

The reasoning problem for strict inheritance networks with
conjunction and negation is coNP-complete.

Proof (sketch).
We show hardness by a reduction from 3SAT.
Let D= C1∧ . . .∧Cn be formula in CNF with exactly three literals per clause
(over atoms ai ).
Let σ(Cj) be the following translation:

a1∨a2∨a3 7→ (nota1 and nota2) isa a3
¬a1∨a2∨a3 7→ (a1 and nota2) isa a3

¬a1∨¬a2∨a3 7→ (a1 anda2) isa a3
¬a1∨¬a2∨¬a3 7→ (a1 anda2) isa (nota3)

Extend σ to CNF formulae, and show that D is unsatisfiable iff σ(D) |=⊥.
November 16, 2015 Nebel, Lindner, Engesser – KR&R 29 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Conclusion

Strict inheritance networks are easy
Inheritance corresponds to a universally quantified
implication
If concepts are atomic, everything can be decided in poly.
time
We can deal with negation without increasing the complexity
Conjunction and negation, however, make the reasoning
problem hard
. . . as hard as propositional unsatisfiability.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 30 / 31



Introduction

A simple
network
formalism

Semantic
Networks with
Instances

Semantic
Networks with
Negation

Semantic
Networks with
Negation and
Conjunction

Literature

Literature

P. Atzeni, D. S. Parker.
Set Containment Inference and Syllogisms.
Theoretical Computer Science, 62: 39–65, 1988.

November 16, 2015 Nebel, Lindner, Engesser – KR&R 31 / 31


	Introduction
	Motivation

	A simple network formalism
	Semantics
	A polynomial inheritance algorithm
	Soundness & Completeness

	Semantic Networks with Instances
	Semantic Networks with Negation
	Satisfiability of a Semantic Network
	Reasoning

	Semantic Networks with Negation and Conjunction

