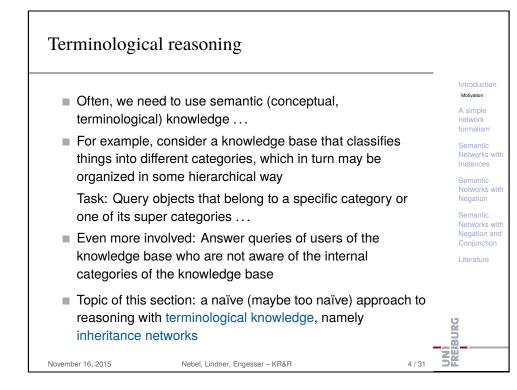
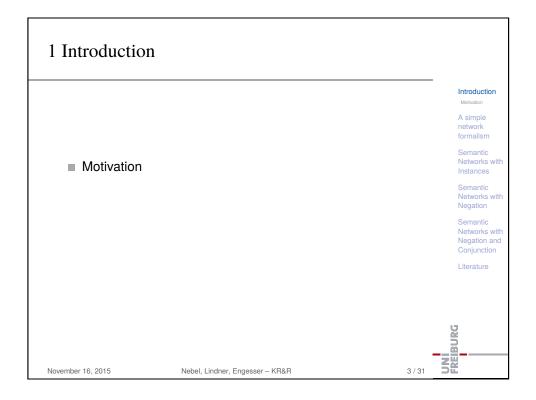
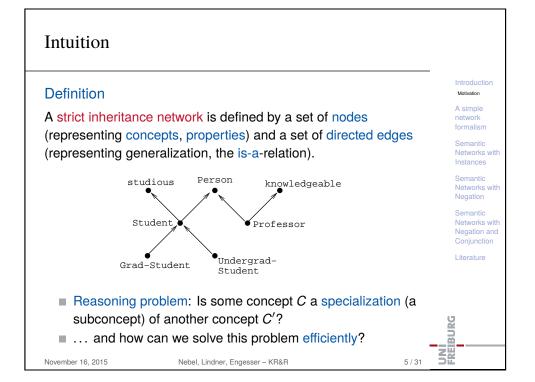
Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics I: Simple, Strict Inheritance Networks UNI FREI

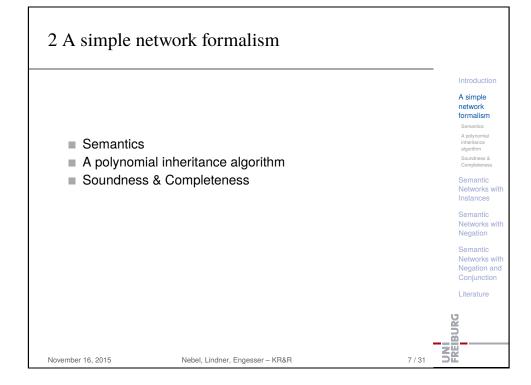
BURG

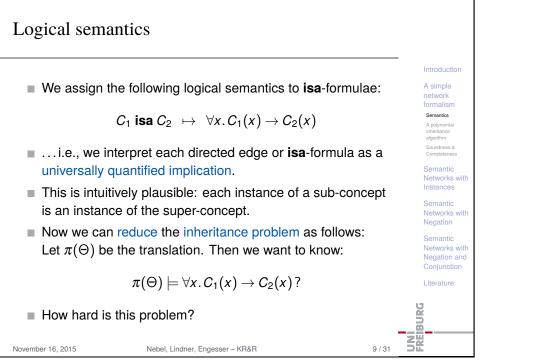
Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 16, 2015

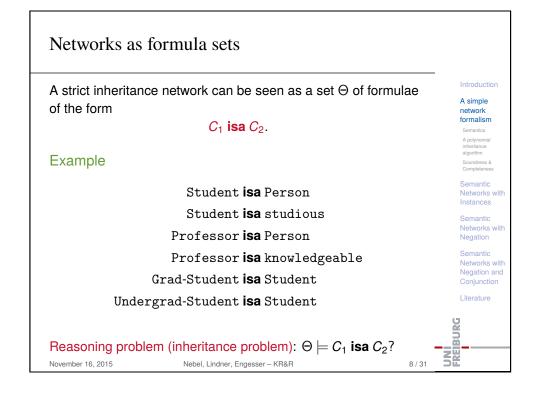












A polynomial	l reasoning algorithm			
Let G_{Θ} be the graph corresponding to Θ . Then we have:				
	$\pi(\Theta) \models \forall x. C_1(x) \to C_2(x)$		A simple network formalism	
	iff		Semantics A polynomial	
there	e exists a path in G_{Θ} from C_1 to C	2.	inheritance algorithm Soundness & Completeness	
which has	s to be proven (next slides).		Semantic Networks with Instances	
Thus, we had	ve reduced reasoning in strict inh	eritance	Semantic	
networks to g polynomial ti	graph reachability problem, which	n is solvable in	Networks with Negation	
Note: Reaso	oning is not simple because we us	• •	Semantic Networks with Negation and Conjunction	
graph proble	e knowledge (there are actually v ems),	ery announ	Literature	
reasoning	g is simple because the expressiv	veness		
compared w	ith first-order logic is very restricted	ed		
November 16, 2015	Nebel, Lindner, Engesser – KR&R			

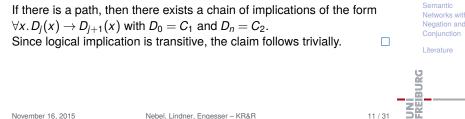
Soundness

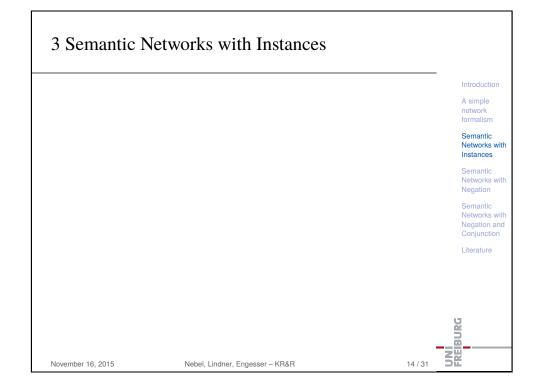
Theorem (Soundness of inheritance reasoning)

If there exists a path from C_1 to C_2 in G_{Θ} , then

$$\pi(\Theta) \models \forall x. C_1(x) \to C_2(x).$$

Proof.





Completeness

Theorem (Completeness of inheritance reasoning)

If $\pi(\Theta) \models \forall x. C_1(x) \rightarrow C_2(x)$, then there exists a path from C_1 to C_2 in G_{Θ} .

Proof.

A simple

network

Semantics

algorithm

A polynomial

Soundness &

Completeness

Instances

Semantic

Negation

Networks with

We prove the contraposition.

Assume that there exists no such path from C_1 to C_2 in G_{Θ} . We show that $\pi(\Theta) \not\models \forall x. C_1(x) \rightarrow C_2(x)$. For this define an interpretation on a universe with exactly one element d such that d is in the interpretation of C_1 and in the interpretation of all

concepts reachable from C_1 by following directed edges (and not in the interpretation of any other concept).

Nebel, Lindner, Engesser - KR&R

This interpretation satisfies all formulae in $\pi(\Theta)$.

However, it does not satisfy $\forall x. C_1(x) \rightarrow C_2(x)$. For this reason, we have $\pi(\Theta) \not\models \forall x. C_1(x) \rightarrow C_2(x)$.

November 16, 2015

November 16, 2015

An extension: instances We also want to talk about instances of concepts. Example: studious Person knowledgeable Student Professor Indergrad Student Grad-Student John Bernhard ... as formulae:

John inst-of Undergrad-Student Bernhard inst-of Professor

Semantics A polynomial inheritance algorithm

Instances

Semantic Networks with Negation

A simple

network formalism

Semantic

Instances

Semantic

Negation

Networks with

Networks with

Networks with

Negation and

Literature

BURG

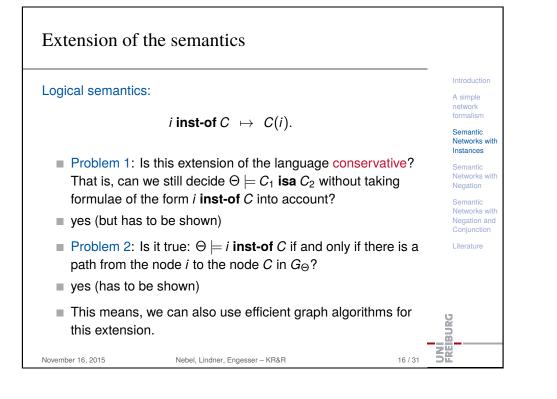
NU

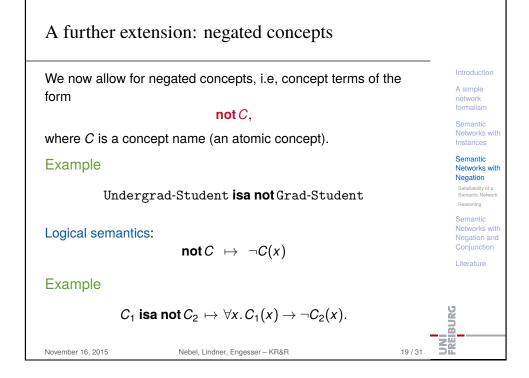
BURG

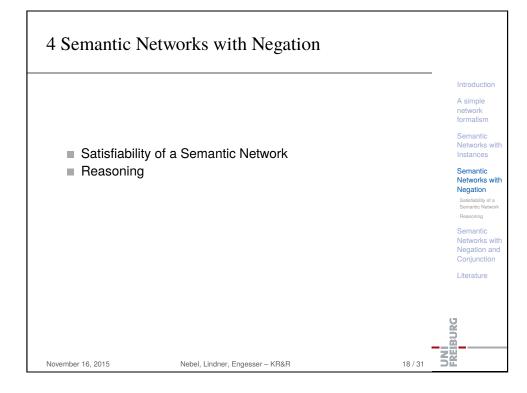
NE

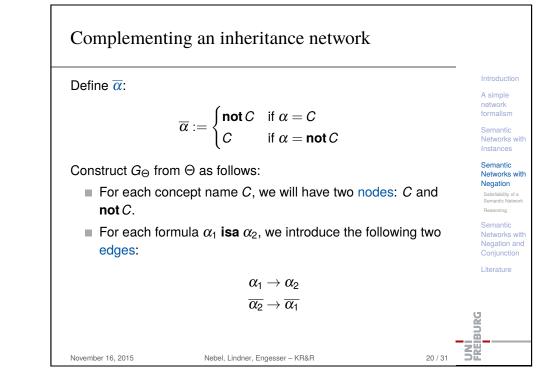
12/31

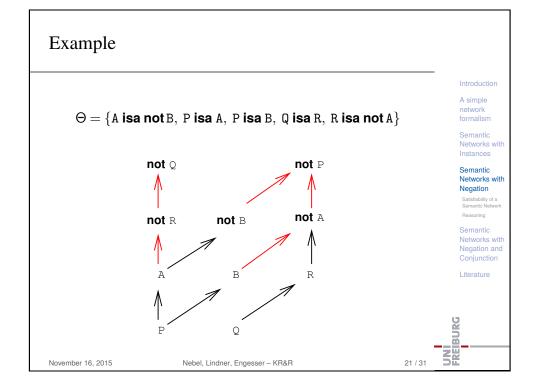
Soundness & Completeness











Deciding satisfiability

Theorem (Satisfiability of strict networks with negation)

 $\Theta \models \bot$ if and only if the graph G_{Θ} contains a cycle from α to $\overline{\alpha}$ and back to α .

Proof.

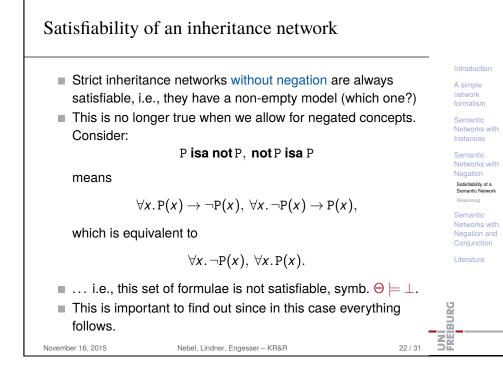
 \Leftarrow : Adding $\overline{\alpha_2} \rightarrow \overline{\alpha_1}$ corresponds to adding

$$\forall x. \neg \alpha_2(x) \rightarrow \neg \alpha_1(x)$$

when $\forall x. \alpha_1(x) \rightarrow \alpha_2(x)$ is given. This is logically correct (contraposition). Since all directed paths in G_{Θ} correspond to universally quantified implications that can be deduced from $\pi(\Theta)$, a cycle as in the theorem implies:

$$\forall x. \, \alpha(x)
ightarrow \overline{lpha}(x), \ \forall x. \, \overline{lpha}(x)
ightarrow lpha(x).$$

This, however, is unsatisfiable. November 16, 2015 Nebel, Lindner, Engesser - KR&R



Proof – continued

Proof (cont'd).

A simple

network

Networks wit

Semantic

Networks with

Satisfiability of a

Semantic Networ

Semantic Networks wit

Literature

URG

INI

23/31

Negation and

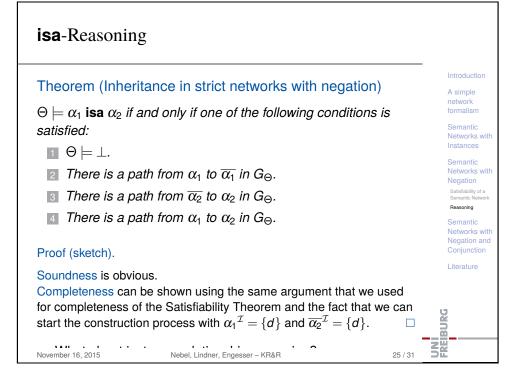
network \Rightarrow : We have to show that unsatisfiability of Θ implies the existence of formalism a cycle from some node α to $\overline{\alpha}$ and back to α in G_{Θ} . We prove the contraposition, i.e. that the absence of any such cycle implies satisfiability. We start with the universe $D = \{d\}$ and then construct step-wise an interpretation for all concepts. Convention: Whenever we assign $\alpha^{\mathcal{I}} = \{d\}$, then we assign $\overline{\alpha}^{\mathcal{I}} = \emptyset$. Reasoning **1** Choose an α without an interpretation that has no path to $\overline{\alpha}$. 2 Assign $\alpha^{\mathcal{I}} = \{d\}$ and continue to do that for all concepts β reachable from α that do not have an interpretation. 3 Continue until all concepts have an interpretation. If there is still a concept without an interpretation, we always can find one satisfying the condition in step 1 since there is no cycle. BURG In step 2, no concept reachable from α can have an empty interpretation, so the assignment does not violate any subconcept NE November 16, 2015 Nebel, Lindner, Engesser - KR&R 24/31

A simple

Networks wit

Networks with Negation Satisfiability of a Semantic Networ

Networks with Negation and Conjunction



A final extension: conjunctions and negation

A concept description is a concept name (*C*), a negation of a concept name (**not** *C*) or the conjunction of concept descriptions (α_1 and α_2).

Example

(Student and not Grad-Student) isa Undergrad-Student (Woman and Parent) isa Mother A simple network formalism Semantic Networks with Instances Semantic Networks with Negation Semantic Networks with Negation and Conjunction

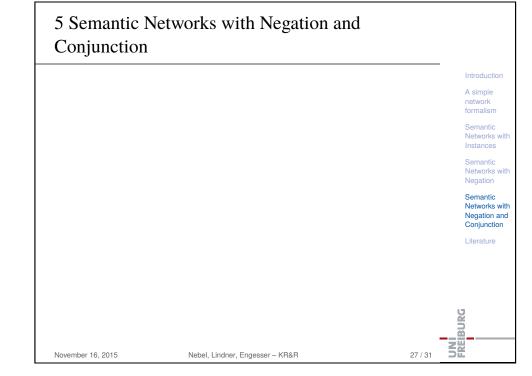
BURG

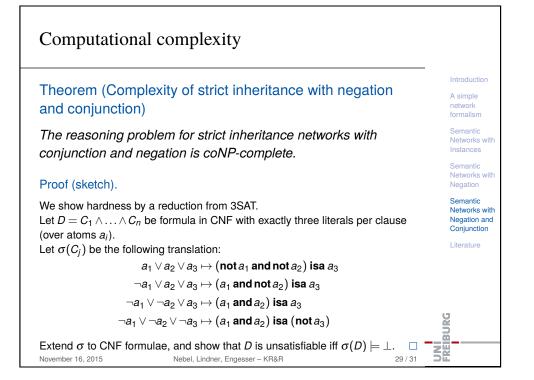
INI

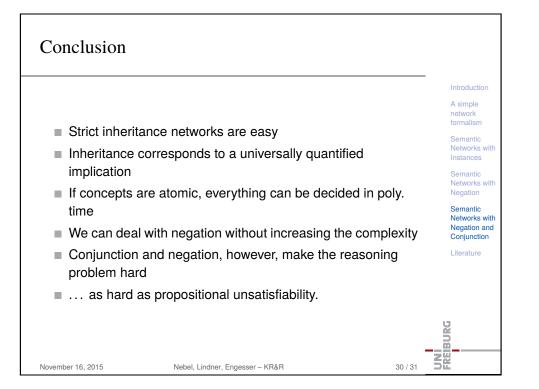
28/31

Logical semantics is obvious!

Is it still possible to decide inheritance in polynomial time?







Literature			
	Parker. nt Inference and Syllogisms. omputer Science, 62: 39–65, 1988.		Introduction A simple network formalism Semantic Networks with Instances Semantic Networks with Negation Semantic Networks with Negation and Conjunction Literature
November 16, 2015	Nebel, Lindner, Engesser – KR&R	31 / 31	