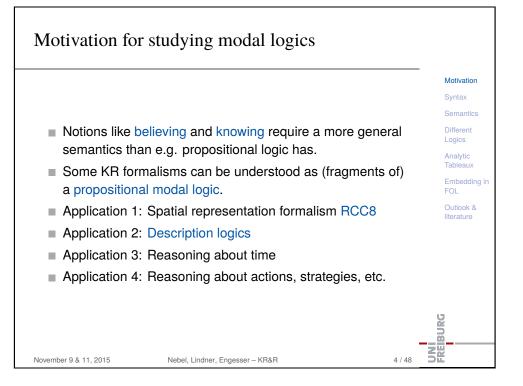
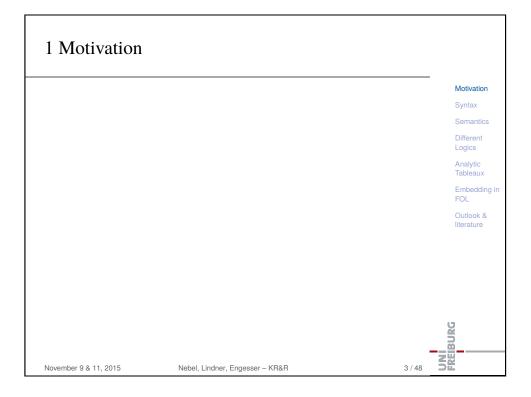
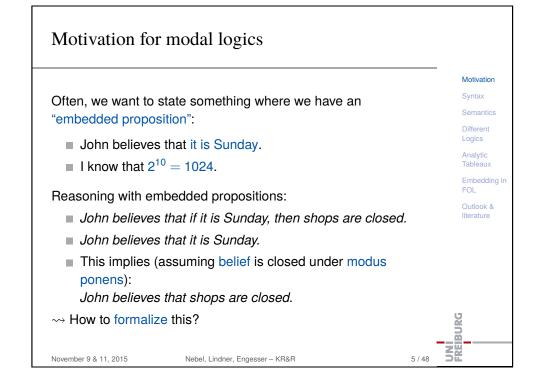
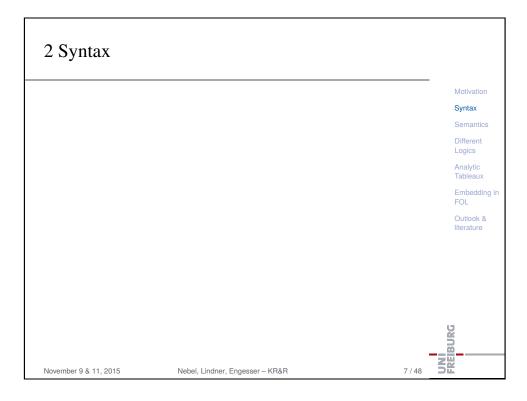
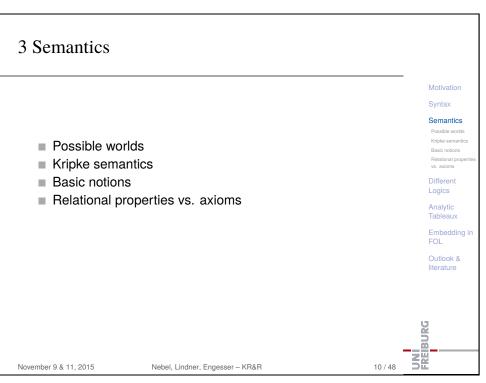
Principles of Knowledge Representation and Reasoning Modal Logics Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 9 & 11, 2015

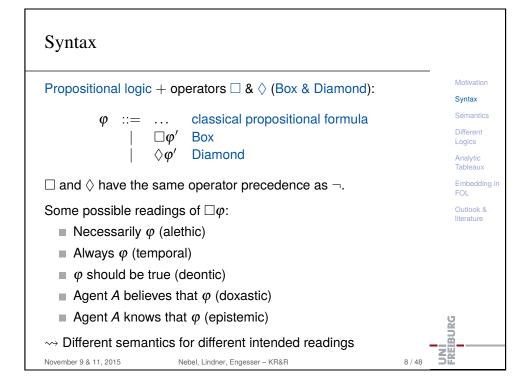


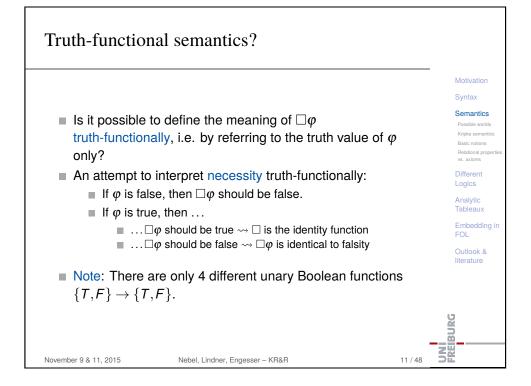












Semantics: the idea

In classical propositional logic, formulae are interpreted over single interpretations and are evaluated to true or false.

In modal logics one considers sets of interpretations: possible worlds (physically possible, conceivable, ...).

Main idea:

- Consider a world (interpretation) w and a set of worlds W which are possible with respect to w.
- \blacksquare A classical formula (with no modal operators) φ is true with respect to (w, W) iff φ is true in w.
- $\blacksquare \Box \varphi$ is true wrt. (w, W) iff φ is true in all worlds in W.
- $\blacksquare \lozenge \varphi$ is true wrt. (w, W) iff φ is true in some world in W.
- Meanings of \square and \lozenge are interrelated by: $\lozenge \varphi \equiv \neg \square \neg \varphi$.

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

12 / 48

SE

Motivation

Semantics

Kripke semantic Basic notions

Relational pro

vs. axioms

Logics

Analytic

FOL

Tableaux

Outlook &

literature

Embedding in

Syntax

Frames, interpretations, and worlds

Definition (Kripke frame)

A (Kripke, relational) frame is a pair $\mathcal{F} = \langle W, R \rangle$, where W is a non-empty set (of worlds) and $R \subseteq W \times W$ is a binary relation on W (accessibility relation).

For $(w, v) \in R$ we write also wRv. We say that v is an R-successor of w or that v is R-reachable from w.

Definition (Kripke model)

November 9 & 11, 2015

For a given set of propositional variables Σ , a Kripke model (or interpretation) based on the frame $\mathcal{F} = \langle W, R \rangle$ is a triple $\mathcal{I} = \langle W, R, \pi \rangle$, where π is a function that maps worlds w to truth assignments $\pi_w : \Sigma \to \{T, F\}$, i.e.:

$$\pi \colon W \to \{T, F\}^{\Sigma}, \ w \mapsto \pi_w.$$

Nebel, Lindner, Engesser - KR&R

Motivation

Syntax

Possible world:

Kripke semantics

Basic notions Relational nro vs. axioms

Logics

Analytic Tableaux

Embedding in

Outlook & literature

Semantics: an example

current world

possible worlds W

Examples:

- $\blacksquare a \land \neg b$ is true relative to (w, W).
- \blacksquare $\Box a$ is not true relative to (w, W).
- $\blacksquare \Box (a \lor b)$ is true relative to (w, W).

Question: How to evaluate modal formulae in $w \in W$?

- → For each world, we specify a set of possible worlds.
- → Frames

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

13 / 48

Basic notions

Relational pro

Logics

Analytic

FOL

Tableaux

Outlook &

literature

Syntax

Basic notions

Relational pro

vs. axioms

Logics

Analytic

Tableaux

Outlook 8

literature

FOL

Semantics: truth in a world

A formula φ is true in world w in an interpretation $\mathcal{I} = \langle W, R, \pi \rangle$ under the following conditions:

$$\mathcal{I}, w \models a$$
 iff $\pi_w(a) = T$

$$\mathcal{I}, \mathbf{w} \models \top$$

November 9 & 11, 2015

$$\mathcal{I}, \mathbf{w} \not\models \bot$$

$$\mathcal{I}, \mathbf{w} \models \neg \mathbf{\varphi}$$
 iff $\mathcal{I}, \mathbf{w} \not\models \mathbf{\varphi}$

$$\mathcal{I}, w \models \varphi \land \psi$$
 iff $\mathcal{I}, w \models \varphi$ and $\mathcal{I}, w \models \psi$

$$\mathcal{I}, w \models \varphi \lor \psi$$
 iff $\mathcal{I}, w \models \varphi$ or $\mathcal{I}, w \models \psi$

$$\mathcal{I}, w \models \varphi \rightarrow \psi$$
 iff $\mathcal{I}, w \not\models \varphi$ or $\mathcal{I}, w \models \psi$

$$\mathcal{I}, w \models \varphi \leftrightarrow \psi$$
 iff $\mathcal{I}, w \models \varphi$ if and only if $\mathcal{I}, w \models \psi$

$$\mathcal{I}, w \models \Box \varphi$$
 iff $\mathcal{I}, u \models \varphi$, for all u s.t. wRu

$$\mathcal{I}, w \models \Diamond \varphi$$
 iff $\mathcal{I}, u \models \varphi$, for some u s.t. wRu

Nebel, Lindner, Engesser - KR&R

15 / 48

Satisfiability and validity

A formula φ is satisfiable in an interpretation \mathcal{I} if there exists a world w in \mathcal{I} such that $\mathcal{I}, w \models \varphi$.

A formula φ is satisfiable in a frame \mathcal{F} (satisfiable in a class of frames \mathcal{C}) if it is satisfiable in an interpretation \mathcal{I} based on \mathcal{F} (satisfiable in an interpretation $\mathcal I$ based on some frame contained in C).

A formula φ is true in an interpretation \mathcal{I} (symbolically $\mathcal{I} \models \varphi$) if φ is true in all worlds of \mathcal{I} .

A formula φ is valid in a frame \mathcal{F} or \mathcal{F} -valid (symb. $\mathcal{F} \models \varphi$) if φ is true in all interpretations based on \mathcal{F} .

A formula φ is valid in a class of frames \mathcal{C} or \mathcal{C} -valid (symb. $\mathcal{C} \models \varphi$) if $\mathcal{F} \models \varphi$ for all $\mathcal{F} \in \mathcal{C}$.

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

Motivation Syntax

Krinke semantic Basic notions

vs. axioms

Analytic Tableaux

Logics

Embedding in FOL

Outlook &

literature

Validities in **K**

K denotes the class of all frames – named after Saul Kripke, who invented this semantics.

Some validities in K:

 $\bullet \lor \neg \varphi$

 $\Box (\phi \lor \neg \phi)$

 $\square \varphi$, if φ is a classical tautology

 $\Box (\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ (axiom schema K)

Moreover, it holds:

November 9 & 11, 2015

If φ is **K**-valid, then $\square \varphi$ is **K**-valid

Nebel, Lindner, Engesser - KR&R

Syntax

Basic notions

Relational pro

Logics

Analytic

FOL

Tableaux

Outlook &

literature

Validity: some examples

Theorem

K is K-valid.

 $K = \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$

Proof.

Let \mathcal{I} be an interpretation and let w be a world in \mathcal{I} .

Assume $\mathcal{I}, w \models \Box(\phi \rightarrow \psi)$, i.e., in all worlds u with wRu, if ϕ is true then also ψ is. (Otherwise K is true in w anyway.)

If $\Box \varphi$ is false in w, then $(\Box \varphi \rightarrow \Box \psi)$ is true and K is true in w.

If $\Box \varphi$ is true in w, then both $\Box (\varphi \rightarrow \psi)$ and $\Box \varphi$ are true in w. Hence both $\phi \rightarrow \psi$ and ϕ are true in every world u accessible from w. Hence ψ is true in any such u, and therefore $w \models \Box \psi$.

Since \mathcal{I} and w were chosen arbitrarily, the argument goes through for any \mathcal{I} , w, i.e., K is **K**-valid.

Basic notions

Logics

Analytic Tableaux

Embedding in FOL

Outlook & literature

Non-validity: example

Proposition

 $\Diamond \top$ is not **K**-valid.

Proof.

A counterexample is the following interpretation $\mathcal{I} = \langle W, R, \pi \rangle$ with:

$$W := \{w\},$$
 $R := \emptyset,$ $\pi_w(a) := T \quad (a \in \Sigma).$

We have $\mathcal{I}, w \not\models \Diamond \top$ because there is no u such that wRu.

Logics

Analytic

Tableaux

Outlook &

literature

FOL

November 9 & 11, 2015

Non-validity: example

Proposition

 $\Box \phi \rightarrow \phi$ is not **K**-valid.

Proof.

A counterexample is the following interpretation $\mathcal{I} = \langle W, R, \pi \rangle$ with:

$$egin{aligned} \mathcal{W} &:= \{w\}, \ \mathcal{R} &:= \emptyset, \ \pi_{w}(a) &:= \mathcal{F} \quad (a \in \Sigma). \end{aligned}$$

We have $\mathcal{I}, w \models \Box a$, but $\mathcal{I}, w \not\models a$.

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

Motivation

Syntax

Basic notions

vs. axioms

Analytic Tableaux

Logics

Embedding in FOL

Outlook &

literature

Accessibility and axiom schemata

Let us consider the following axiom schemata:

- (knowledge axiom) $\Box \phi
 ightarrow \phi$
- $\Box oldsymbol{arphi}
 ightarrow \Box \Box oldsymbol{arphi}$ (positive introspection)
- (or $\neg\Box\varphi\rightarrow\Box\neg\Box\varphi$: negative introspection) $\Diamond \varphi \rightarrow \Box \Diamond \varphi$
- $\phi \rightarrow \Box \Diamond \phi$
- $\Box \phi \rightarrow \Diamond \phi$ (or $\square \phi \rightarrow \neg \square \neg \phi$: disbelief in the negation)

... and the following classes of frames, for which the accessibility relation is restricted as follows:

- T: reflexive (wRw for each world w)
- 4: transitive (wRu and uRv implies wRv)
- 5: euclidian (*wRu* and *wRv* implies *uRv*)
- B: symmetric (wRu implies uRw)
- D: serial (for each w there exists v with wRv)

Embedding in Outlook & literature

Syntax

Semantics

Possible world:

Kripke semantic

Relational proper

Basic notions

vs. axioms

Logics

Analytic

Tableaux

Non-validity: another example

Proposition

 $\Box \phi \rightarrow \Box \Box \phi$ is not **K**-valid.

Proof.

A counterexample is the following interpretation:

$$\mathcal{I} = \langle \{u, v, w\}, \{(u, v), (v, w)\}, \pi \rangle$$

with

$$\pi_u(a) := T$$

$$\pi_{v}(a) := T$$

$$\pi_w(a) := F$$

Hence, $\mathcal{I}, u \models \Box a$, but $\mathcal{I}, u \not\models \Box \Box a$.

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

Syntax

Logics

Analytic Tableaux

Embedding in

FOL Outlook &

Relational proper

vs. axioms

Logics

Analytic

Tableaux

Outlook &

literature

FOL

literature

Correspondence between accessibility relations and axiom schemata (1)

Theorem

Axiom schema T (4,5,B,D) is T- valid (4-, 5-, B-, or D-valid, respectively).

Proof.

For T and T: Let \mathcal{F} be a frame from class T. Let \mathcal{I} be an interpretation based on \mathcal{F} and let w be an arbitrary world in \mathcal{I} .

- If $\Box \varphi$ is not true in world w, then axiom T is true in w.
- If $\Box \varphi$ is true in w, then φ is true in all accessible worlds. Since the accessibility relation is reflexive, w is among the accessible worlds, i.e., φ is true in w. Thus also in this case T is true in w.

We conclude: T is true in all worlds in all interpretations based on T-frames.

November 9 & 11, 2015 Nebel, Lindner, Engesser - KR&R 22 / 48 November 9 & 11, 2015 Nebel, Lindner, Engesser - KR&R

Correspondence between accessibility relations and axiom schemata (2)

Theorem

If T (4,5,B,D) is valid in a frame \mathcal{F} , then \mathcal{F} is a **T**-frame (**4-, 5-, B-**, or **D**-frame, respectively).

Proof.

For T and T: Assume that $\mathcal F$ is not a T-frame. We will construct an interpretation based on $\mathcal F$ that falsifies T.

Because $\mathcal F$ is not a **T**-frame, there is a world w such that not wRw. Construct an interpretation $\mathcal I$ such that $\mathcal I, w \not\models a$ and $\mathcal I, v \models a$ for all v such that wRv.

Now $\mathcal{I}, w \models \Box a$ and $\mathcal{I}, w \not\models a$, and hence $\mathcal{I}, w \not\models \Box a \rightarrow a$.

Motivation Syntax

Semantics

Kripke semantics

Basic notions

vs. axioms

Different Logics

Analytic

Tableaux

Outlook &

Motivation
Syntax
Semantics

Different

Analytic

Tableaux

Outlook &

literature

FOL

Embedding in

literature

FOL

Embedding in

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

Different modal logics

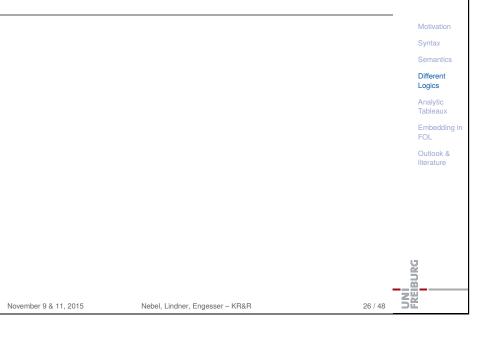
Name	Property	Axiom schema
K	_	$\Box(\varphi ightarrow \psi) ightarrow (\Box \varphi ightarrow \Box \psi)$
Τ	reflexivity	$\ \ \Box oldsymbol{arphi} ightarrow oldsymbol{arphi}$
4	transitivity	$\square arphi ightarrow \square \square arphi$
5	euclidicity	$\Diamond oldsymbol{arphi} ightarrow \Box \Diamond oldsymbol{arphi}$
В	symmetry	$\phi ightarrow\Box\Diamond \phi$
D	seriality	$\Box oldsymbol{arphi} ightarrow \Diamond oldsymbol{arphi}$

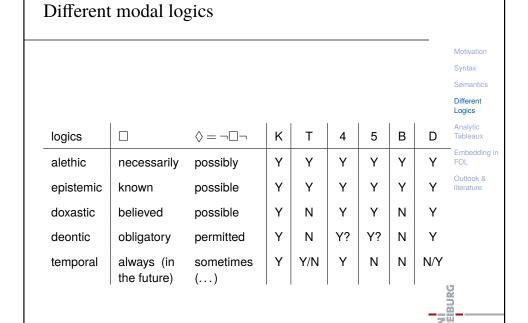
Some basic modal logics:

November 9 & 11, 2015

4 Different Logics

November 9 & 11, 2015





5 Analytic Tableaux

■ Tableau rules

Motivation Syntax

Semantics Different

Logics

Analytic

Tableaux Tableau rules

FOL

Embedding ir

Outlook &

literature

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

Proof methods

- How can we show that a formula is C-valid?
- In order to show that a formula is not C-valid, one can construct a counterexample (= an interpretation that falsifies it).
- When trying out all ways of generating a counterexample without success, this counts as a proof of validity.
- Method of (analytic/semantic) tableaux

Motivation

Syntax

Different

Logics

Analytic Tableaux

FOL

Outlook & literature

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

Tableaux method

A tableau is a tree with nodes marked as follows:

- $\blacksquare w \models \varphi$,
- $\mathbf{w} \not\models \varphi$, and
- wRv.

A branch that contains nodes marked with $w \models \varphi$ and $w \not\models \varphi$ is closed. All other branches are open. If all branches are closed, the tableau is called closed.

A tableau is constructed by using the tableau rules.

Motivation

Syntax Semantics

Different Logics

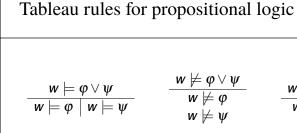
Analytic Tableaux

Tableau rules Embedding ir

Outlook &

FOL

literature



$$\frac{w \not\models \varphi \lor \psi}{w \not\models \varphi} \qquad \frac{w \models \neg \varphi}{w \not\models \varphi}$$

$$\frac{w \models \varphi \land \psi}{w \models \varphi} \qquad \frac{w \not\models \varphi \land \psi}{w \not\models \varphi \mid w \not\models \psi} \qquad \frac{w \not\models \neg \varphi}{w \models \varphi}$$

$$\begin{array}{c|c}
w \models \varphi \rightarrow \psi \\
\hline
w \not\models \varphi \mid w \models \psi
\end{array}
\qquad
\begin{array}{c|c}
w \not\models \varphi \rightarrow \psi \\
\hline
w \models \varphi \\
w \not\models \psi
\end{array}$$

Motivation

Syntax

Semantics Different Logics

Analytic Tableaux Tableau rules

Embedding in FOL

Outlook & literature

November 9 & 11, 2015

Nebel, Lindner, Engesser - KR&R

November 9 & 11, 2015

Additional tableau rules for modal logic **K**

 $w \not\models \Box \varphi$ if wRv is on the branch already

$$\frac{w \models \Diamond \varphi}{wRv} \quad \text{for new } v \qquad \qquad \frac{w \not\models \Diamond \varphi}{v \not\models \varphi} \quad \text{if } wRv \text{ is on the} \\ \text{branch already}$$

November 9 & 11, 2015 Nebel, Lindner, Engesser - KR&R

Motivation Syntax

Different

Logics

Analytic

Tableau rules

Outlook &

FOL

for new v

$v \models \varphi$

Properties of **K** tableaux

Proposition

If a K-tableau is closed, the truth condition at the root cannot be satisfied.

Theorem (Soundness)

If a K-tableau with root $w \not\models \varphi$ is closed, then φ is **K**-valid.

Theorem (Completeness)

If φ is **K**-valid, then there is a closed tableau with root $w \not\models \varphi$.

Termination: There are strategies for constructing K-tableaux that always terminate after a finite number of steps, and result in a closed tableau whenever one exists.

November 9 & 11, 2015

satisfiable or valid?

Nebel, Lindner, Engesser - KR&R

Complexity of simple modal logics

How hard is it to check whether a modal logic formula is

For example, one can show that each formula φ that is

The answer depends in fact on the considered class of frames!

satisfiable in some S5-frame is satisfiable in an S5-frame with

Tableau rules for other modal logics

Proofs within more restricted classes of frames allow the use of further tableau rules.

- For reflexive (T) frames we may extend any branch with wRw.
- For transitive (4) frames we have the following additional rule:
 - If wRv and vRu are in a branch, wRu may be added to the branch.
- For serial (**D**) frames we have the following rule:
 - If there is $w \models ...$ or $w \not\models ...$ on a branch, then add wRv for a new world v.
- Similar rules for other properties...

Different

Logics

Analytic Tableau rules

Embedding in FOL

Outlook & literature

Checking whether a modal formula is satisfiable in some S5-model is NP-complete (and hence checking S5-validity is coNP-complete).

For other modal logics, such as K, KT, KD, K4, S4, these problems are PSPACE-complete.

November 9 & 11, 2015

Syntax

Different

Logics

Analytic

Tableaux

Outlook &

Syntax

Different

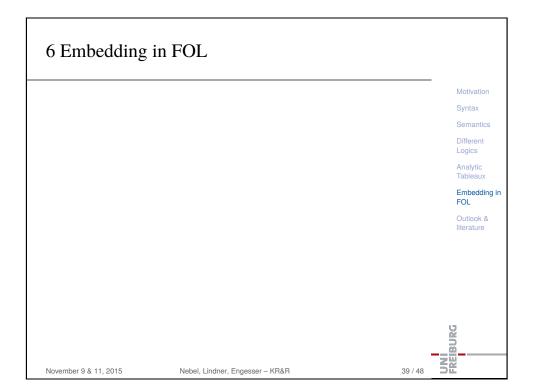
FOL

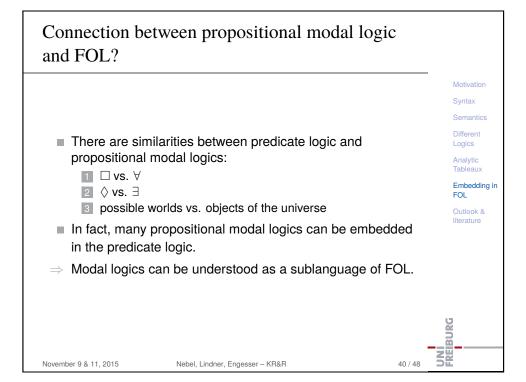
Outlook &

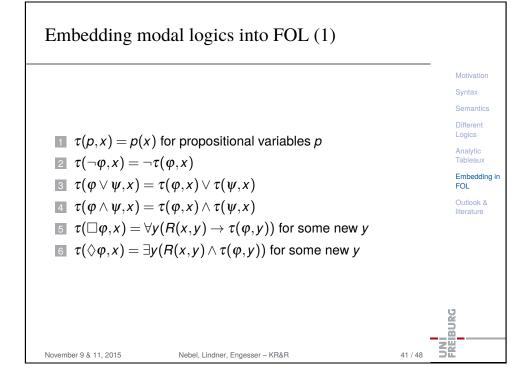
November 9 & 11, 2015 Nebel, Lindner, Engesser - KR&R

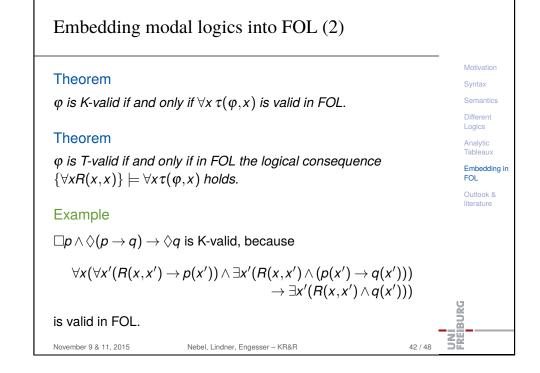
 $|W| \leq |\varphi|$.

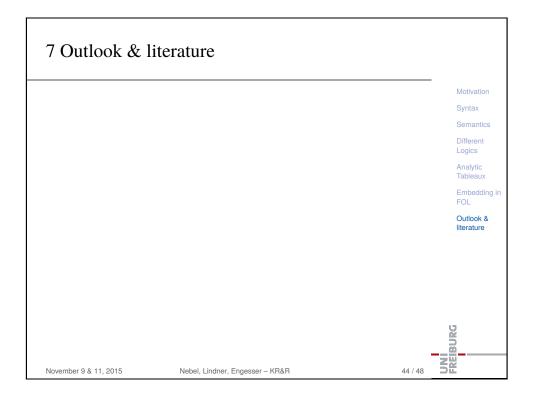
Proposition

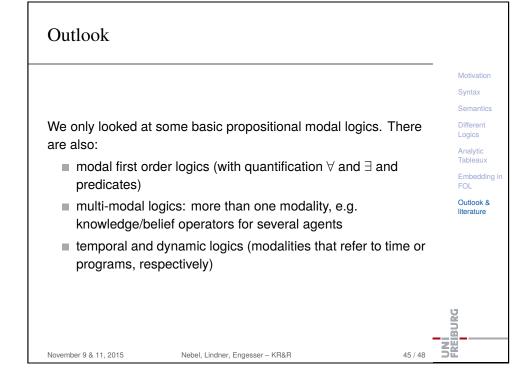


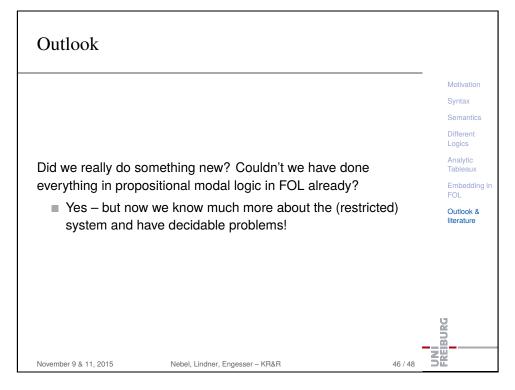


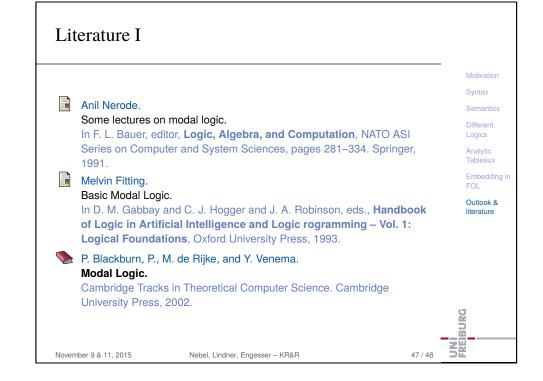












Literature II

M. Fitting.

Proof Methods for Modal and Intuitionistic Logic.

Reidel, 1983.

Robert Goldblatt.

Logics of Time and Computation.

Stanford University, 1992.

B. F. Chellas.

Modal Logic: An Introduction.

Cambridge University, 1980.

J. Y. Halpern, R. Fagin, Y. Moses, and M. Y. Vardi

Reasoning About Knowledge.

MIT Press, 1995.

Motivation

Syntax

Semantics

Different Logics

Analytic Tableaux

Embedding in

Outlook & literature

FOL

November 9 & 11, 2015