Principles of Knowledge Representation and Reasoning Complexity Theory

UNI FREIBURG

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 24, 2018

Motivation

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
- Gives hint on what sub-problems might be interesting

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Basic Notions: a Reminder

Motivation

Basic Notions: a Reminder

Algorithms and Turing machine

and complexity

P and NP
Upper and lower

bounds Polynomial

reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one:
 DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

Motivation

Notions: a

Algorithms and Turing machines

Problems, soluti and complexity

Complexity class P and NP

Upper and low bounds

olynomial

IP-completenes

Beyond NP

Oracle TMs and the Polynomial Hierarchy

A problem is a set of pairs (I,A) of strings in {0,1}*.
 I: instance; A: answer
 If all answers A ∈ {0,1}: decision problem

Motivation

Notions: a

Reminder

Algorithms and Turing machine

Problems, solutions, and complexity

Complexity classe P and NP

Upper and lower bounds

reductions NP-completeness

NP-completenes

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- A problem is a set of pairs (I,A) of strings in {0,1}*.
 I: instance; A: answer
 If all answers A ∈ {0,1}: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1

Monvalion

Basic Notions: a

Notions: a Reminder

Algorithms and Turing machine

Problems, solutions, and complexity

Complexity classe P and NP

Upper and lower bounds

reductions NP-completenes

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- **A problem** is a set of pairs (I, A) of strings in $\{0, 1\}^*$. I: instance: A: answer If all answers $A \in \{0, 1\}$: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm solves (or decides) a problem if it computes the right answer for all instances.

Notions: a

Reminder

Problems solutions

and complexity

P and NP Upper and lower

Bevond NP

Oracle TMs

- A problem is a set of pairs (I,A) of strings in {0,1}*.
 I: instance; A: answer
 If all answers A ∈ {0,1}: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm solves (or decides) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

 $T: \mathbb{N} \to \mathbb{N}$,

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Motivation

Basic Notions: a

Reminder
Algorithms and

Problems, solutions and complexity

Complexity classe P and NP

Upper and lower bounds

eductions

141 -completenes

Bevond NP

Oracle TMs and the Polynomial

Litoratur

- **A problem** is a set of pairs (I, A) of strings in $\{0, 1\}^*$. I: instance: A: answer If all answers $A \in \{0, 1\}$: decision problem
- A decision problem is the same as a formal language: the set of strings formed by the instances with answer 1
- An algorithm solves (or decides) a problem if it computes the right answer for all instances.
- Complexity of an algorithm: function

$$T\colon \mathbb{N}\to\mathbb{N},$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.

Reminder

Problems solutions and complexity

Bevond NP

Oracle TMs

Complexity classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
 - Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
 - In practice, a reasonable definition
- The class of problems decidable on non-deterministic Turing machines in polynomial time, i.e., having a poly. length accepting computation for all positive instances: NP
- More classes are definable using other resource bounds on time and memory

Motivation

Basic Notions: a Reminder

Algorithms and

Problems, solution

Complexity classes P and NP

Upper and lower

Polynomial

eductions

NP-completenes

Bevond NP

Oracle TMs

and the Polynomial Hierarchy

Upper bounds (membership in a class) are usually easy to prove:

Motivation

Notions: a

Reminder

Turing machines

Complexity classe

Complexity class P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm

Motivation

Notions: a

Reminder

P and NP

Upper and lower bounds

reductions

NP-completeness

Beyond NP

Oracle TMs and the

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected

Motivation

Notions: a Reminder

P and NP

Upper and lower bounds

reductions NP-completeness

Beyond NP

Oracle TMs and the

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:

Motivation

Notions: a

Reminder

Turing machines

Complexity class

P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)

Notions: a

Reminder

P and NP Upper and lower bounds

Bevond NP

Oracle TMs

- Upper bounds (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- Lower bounds (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

iviotivation

Notions: a

Reminder

Problems, solution and complexity

Complexity class P and NP

Upper and lower

Polynomial reductions

Beyond NP

Oracle TMs and the

Polynomial Hierarchy

Litoratus

Polynomial reduction

Given languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_p L_2$, if there exists a polynomial time-computable function f such that

$$x \in L_1 \iff f(x) \in L_2$$
.

Rationale: it cannot be harder to decide L_1 than L_2

Motivation

Notions: a Reminder

Algorithms and

Problems, solution and complexity

P and NP
Upper and lower

bounds

Polynomial reductions

NP-completene

Beyond NP

Oracle TMs

and the Polynomial Hierarchy

Literatu

Polynomial reduction

Given languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_p L_2$, if there exists a polynomial time-computable function f such that

$$x \in L_1 \iff f(x) \in L_2$$
.

Rationale: it cannot be harder to decide L_1 than L_2

■ L is hard for a class C (C-hard) if all languages of this class can be reduced to L.

Reminder

P and NP

Polynomial

reductions

Bevond NP

Oracle TMs and the

Polynomial reduction

Given languages L_1 and L_2 , L_1 can be polynomially reduced to L_2 , written $L_1 \leq_p L_2$, if there exists a polynomial time-computable function f such that

$$x \in L_1 \iff f(x) \in L_2$$
.

Rationale: it cannot be harder to decide L_1 than L_2

- L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
- L is complete for C (C-complete) if L is C-hard and $L \in C$.

Reminder

P and NP

Polynomial

reductions

Bevond NP

Oracle TMs and the

■ A problem is NP-complete iff it is NP-hard and in NP.

Motivation

Notions: a

Reminder

Algorithms and Turing machine

and complexity

Complexity classe

P and NP Upper and lower

Polynomial

reductions

NP-completeness

Beyond NP

seyona i

Oracle TMs and the Polynomial Hierarchy

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)

Motivation

Basic Notions: a

Reminder

Algorithms and Turing machine

and complexity

Complexity class

P and NP Upper and lower

Polynomial

Polynomial reductions

NP-completeness

Bevond NP

beyond Ni

Oracle TMs and the Polynomial Hierarchy

Literatu

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth assignments of certain formulae

Reminder

P and NP

Upper and lower

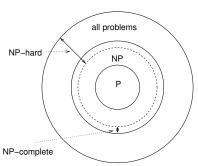
reductions

NP-completeness

Bevond NP

Oracle TMs

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth assignments of certain formulae



Motivation

Basic Notions: a Reminder

Algorithms and

and complexity

P and NP
Upper and lower

bounds

Polynomial reductions

NP-completeness

Device of NID

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Beyond NP

Motivation

Notions: a Reminder

Beyond NP The class co-NP

The class PSPACE
Other classes

Oracle TMs and the Polynomial Hierarchy

■ Note that there is some asymmetry in the definition of NP:

Motivation

Notions: a Reminder

Beyond NP

The class co-NP
The class PSPACE
Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation

Motivation

Notions: a

Beyond NP

The class co-NP
The class PSPAC

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable

Notions: a

Reminder

Beyond NP

The class co-NP

Oracle TMs and the Hierarchy

April 24, 2018

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - In other words: Checking a proposed solution (of poly size) is easy.

Motivation

Notions: a

Beyond NP

The class co-NP
The class PSPAC

Oracle TMs and the Polynomial Hierarchy

Literature

15 / 29

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - In other words: Checking a proposed solution (of poly size) is easy.
 - What if we want to decide UNSAT, the complementary problem?

Motivation

Notions: a Reminder

Beyond NP
The class co-NP

The class PSPAC Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - In other words: Checking a proposed solution (of poly size) is easy.
 - What if we want to decide UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!

Motivation

Notions: a Reminder

Beyond NP The class co-NP

The class PSPAC Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - In other words: Checking a proposed solution (of poly size) is easy.
 - What if we want to decide UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = { $L \subseteq \Sigma^* : \Sigma^* \setminus L \in C$ } (provided Σ is our alphabet)

Motivation

Notions: a Reminder

Beyond NP The class co-NP

The class PSPAC Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - In other words: Checking a proposed solution (of poly size) is easy.
 - What if we want to decide UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = { $L \subseteq \Sigma^* : \Sigma^* \setminus L \in C$ } (provided Σ is our alphabet)
- \blacksquare co-NP = { $L \subseteq \Sigma^* : \Sigma^* \setminus L \in NP$ }

Motivation

Notions: a Reminder

Beyond NP The class co-NP

The class PSPAC Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - In other words: Checking a proposed solution (of poly size) is easy.
 - What if we want to decide UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = { $L \subseteq \Sigma^* : \Sigma^* \setminus L \in C$ } (provided Σ is our alphabet)
- \blacksquare co-NP = $\{L \subseteq \Sigma^* : \Sigma^* \setminus L \in \mathsf{NP}\}$
- Examples: UNSAT, TAUT ∈ co-NP!

Motivation

Notions: a

Beyond NP The class co-NP

The class PSPAC Other classes

Oracle TMs and the Polynomial Hierarchy

- Note that there is some asymmetry in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - In other words: Checking a proposed solution (of poly size) is easy.
 - What if we want to decide UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!
- Define co-C = $\{L \subseteq \Sigma^* : \Sigma^* \setminus L \in C\}$ (provided Σ is our alphabet)
- \blacksquare co-NP = $\{L \subseteq \Sigma^* : \Sigma^* \setminus L \in \mathsf{NP}\}$
- Examples: UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, in particular,

$$P \subseteq NP \cap co-NP$$

Motivation

Notions: a Reminder

Beyond NP The class co-NP

The class PSPAC Other classes

Oracle TMs and the Polynomial Hierarchy

PSPACE

There are problems even more difficult than NP and co-NP...

Motivation

Notions: a Reminder

Beyond NP

The class co-NP
The class PSPACE

Other classes

Oracle TMs and the Polynomial Hierarchy

PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Notions: a Reminder

Beyond NP The class PSPACE

Oracle TMs Hierarchy

PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space: Savitch's Theorem)
- NP⊆PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP⊆NPSPACE)

Motivation

Basic Notions: a Reminder

Beyond NP

The class PSPACE Other classes

Oracle TMs and the Polynomial Hierarchy

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Motivation

Notions: a

Beyond NP
The class co-NP

The class PSPACE

Oracle TMs and the Polynomial Hierarchy

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

Motivation

Notions: a Reminder

Beyond NP
The class co-NP
The class PSPACE

Other classes

Oracle TMs and the Polynomial Hierarchy

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is PSPACE-complete if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and

 A_2 .

Question: Are the languages accepted by A_1 and A_2 identical?

Motivation

Basic Notions: a Reminder

Beyond NP
The class co-NP
The class PSPACE

Other classes

Oracle TMs and the Polynomial Hierarchy

There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)

Motivation

Notions: a Reminder

Beyond NP

The class co-NP The class PSPACE

Other classes

Oracle TMs and the Hierarchy

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)

iviotivation

Notions: a Reminder

Beyond NP

The class PSP

Other classes

Oracle TMs and the Polynomial Hierarchy

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)

iviotivation

Notions: a Reminder

Beyond NP

The class PSP

Other classes

Oracle TMs and the Polynomial Hierarchy

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
- ... and for most of the classes we do not know whether the containment relationships are strict

Motivation

Basic Notions: a Reminder

Beyond NP

The class PSP

Other classes

Oracle TMs and the Polynomial Hierarchy

Oracle TMs and the Polynomial Hierarchy

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Turing reduction

An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string. Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classe based on OTMs

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!

Notions: a Reminder

Beyond NP

Oracle TMs

Oracle Turing machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction
Complexity classe

Complexity class based on OTMs QBF

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction
Complexity classe

Complexity class based on OTMs

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i. e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes

based on OTMs QBF

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written.
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Notions: a Reminder

Bevond NP

Oracle TMs

Oracle Turing machines

21 / 29

April 24, 2018

OTMs allow us to define a more general type of reduction

Motivation

Notions: a

Reminder

Beyond NP

Oracle TMs and the

Turing reduction

based on OTMs

QBF

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.

Notions: a Reminder

Beyond NP

Oracle TMs and the

Turing reduction

based on OTMs

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 \le_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .

Motivation

Notions: a

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing

machines Turing reduction

Complexity classe based on OTMs

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 <_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!

Notions: a Reminder

Bevond NP

Oracle TMs

Turing reduction

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 <_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!

Notions: a Reminder

Bevond NP

Oracle TMs

Turing reduction

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_1 is Turing-reducible to L_2 , symbolically $L_1 <_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2 .
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Notions: a Reminder

Bevond NP

Oracle TMs

Turing reduction

P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

machines Turing reduction

Complexity classes

QBF

Literature

... and so on

- P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

JBF

Literature

... and so on

- P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

machines Turing reduction

Complexity classe based on OTMs

QBF

Literature

... and so on

- PNP = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- 3 co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- 4 NPNPNP

... and so on

Notions: a Reminder

Bevond NP

Oracle TMs

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.

Question: Is there a well-formed Boolean formula φ' that contains k or fewer literal occurrences and that is logically equivalent to φ ?

Notions: a Reminder

Bevond NP

Oracle TMs

Turina reduction

Complexity classes hased on OTMs

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.

Question: Is there a well-formed Boolean formula φ' that contains k or fewer literal occurrences and that is logically equivalent to φ ?

This problem is NP-hard (wrt. to Turing reductions).

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.

Question: Is there a well-formed Boolean formula φ' that contains k or fewer literal occurrences and that is logically equivalent to φ ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

machines

Complexity classes based on OTMs

QBF

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.

Question: Is there a well-formed Boolean formula φ' that contains k or fewer literal occurrences and that is logically equivalent to φ ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle . . .

Motivation

Notions: a Reminder

Bevond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes based on OTMs

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula φ using the standard connectives (not \leftrightarrow) and a non-negative integer k.

Question: Is there a well-formed Boolean formula φ' that contains k or fewer literal occurrences and that is logically equivalent to φ ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle ...
- MEE \in NP NP .

Motivation

Basic Notions: a Reminder

Bevond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

machines

Complexity classes based on OTMs

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

Motivation

Basic Notions: a

Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing

machines

Turing reduction

Complexity classes based on OTMs

QBF

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

$$\Sigma_{0}^{\rho} = P$$
 $\Pi_{0}^{\rho} = P$ $\Delta_{0}^{\rho} = P$ $\Sigma_{i+1}^{\rho} = NP^{\Sigma_{i}^{\rho}}$ $\Pi_{i+1}^{\rho} = co - \Sigma_{i+1}^{\rho}$ $\Delta_{i+1}^{\rho} = P^{\Sigma_{i}^{\rho}}$

Motivation

Basic

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

machines
Turing reduction

Complexity classes based on OTMs

The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

Notions: a Reminder

Bevond NP

Oracle TMs

Complexity classes hased on OTMs

■ PH =
$$\bigcup_{i>0} (\Sigma_i^p \cup \Pi_i^p \cup \Delta_i^p) \subseteq PSPACE$$

$$\blacksquare$$
 NP = Σ_1^p

$$\blacksquare$$
 co-NP = Π_1^p

■ If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing

Turing reduction

Complexity classe

QBF

- If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula $\exists x \varphi$ is true if and only if $\varphi[x/\top] \lor \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true or $\varphi[x/\bot]$ is true).

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing

machines
Turing reduction

Complexity classe based on OTMs

QBF

- If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula $\exists x \varphi$ is true if and only if $\varphi[x/\top] \lor \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true or $\varphi[x/\bot]$ is true).
- A formula $\forall x \varphi$ is true if and only if $\varphi[x/\top] \land \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true and $\varphi[x/\bot]$ is true).

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classe

QBF

- If φ is a propositional formula, P is the set of Boolean variables used in φ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \varphi$ is a QBF.
- A formula $\exists x \varphi$ is true if and only if $\varphi[x/\top] \lor \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true or $\varphi[x/\bot]$ is true).
- A formula $\forall x \varphi$ is true if and only if $\varphi[x/\top] \land \varphi[x/\bot]$ is true (equivalently, $\varphi[x/\top]$ is true and $\varphi[x/\bot]$ is true).
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction Complexity classe

based on OTMs

. .

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

Notions: a Reminder

Beyond NP

Oracle TMs and the

Turing reduction based on OTMs

OBF

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Notions: a Reminder

Bevond NP

Oracle TMs

ORF

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Motivation

Notions: a

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classes

QBF

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing machines

Turing reduction

Complexity classe based on OTMs

Litoratur

Truth of QBFs with prefix $\forall \exists \forall \dots$ is Π_i^p -complete.

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing

Turing reduction Complexity classe based on OTMs

QBF

Truth of QBFs with prefix $\overrightarrow{\forall \exists \forall \dots}$ is Π_i^p -complete. Truth of QBFs with prefix $\overrightarrow{\exists \forall \exists \dots}$ is Σ_i^p -complete. Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Hierarchy Oracle Turing

Turing reduction

Complexity classe based on OTMs

QBF

Truth of QBFs with prefix $\overrightarrow{\forall \exists \forall \dots}$ is Π_i^p -complete.

Truth of QBFs with prefix $\exists \forall \exists \dots$ is Σ_i^p -complete.

Special cases corresponding to SAT and TAUT:

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Oracle Turing

machines

Complexity classe

QBF

Truth of QBFs with prefix $\forall \exists \forall \dots$ is Π_i^p -complete.

Truth of QBFs with prefix $\exists \forall \exists \dots$ is Σ_i^p -complete.

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_1^1 \dots x_n^1$ is NP= Σ_1^p -complete.
- The truth of QBFs with prefix $\forall x_1^1 \dots x_n^1$ is co-NP= Π_1^p -complete.

Motivation

Basic Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Hierarchy Oracle Turing

machines

Complexity classe

based on OTMs

.

Literature

M. R. Garey and D. S. Johnson.

Computers and Intractability – A Guide to the Theory of NP-Completeness.

Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou.

Computational Complexity.

Addison-Wesley, Reading, MA, 1994.

Motivation

Notions: a Reminder

Beyond NP

Oracle TMs and the Polynomial Hierarchy

