

Algorithms and Turing machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

Motivation Basic Notions: a

Reminder Algorithms and Turing machines

Problems, solut and complexity

Complexity clas

Upper and lower bounds

Polynomial reductions

NP-complete

Beyond NP Oracle TMs

and the

Literature

UNI FREIBURG

7/29

Polynomial

- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM

April 24, 2018	Nebel, Lindner, Engesser – KR&R

Problems, so	olutions, and complexity		
- A	(0, 1)		Motivation
A problem	is a set of pairs (I, A) of strings in $\{0, 1\}^*$.		Basic
I: instance;	; A: answer		Notions: a
,	ers $A \in \{0,1\}$: decision problem		Reminder Algorithms and Turing machines
A decision	problem is the same as a formal language:		Problems, solutions, and complexity
the set of s	trings formed by the instances with answer	1	Complexity classes P and NP
An algorith	m solves (or decides) a problem if it compu	tes	Upper and lower bounds
•	nswer for all instances.		Polynomial reductions
•			NP-completeness
Complexity	of an algorithm: function		Beyond NP
	$\mathcal{T}\colon { m I\!N} o { m I\!N},$		Oracle TMs and the
measuring	the number of basic steps (or memory		Polynomial Hierarchy
requiremen	nt) the algorithm needs to compute an answ	/er	Literature
depending	on the size of the instance		
Complexity	of a problem: complexity of the most efficient	ent	2 2
	hat solves this problem.		BURG
	-		NE
April 24, 2018	Nebel, Lindner, Engesser – KR&R	8 / 29	L

Polynomial reduction

■ Given languages L₁ and L₂, L₁ can be polynomially reduced to L₂, written L₁ ≤_p L₂, if there exists a polynomial time-computable function *f* such that

$$x \in L_1 \iff f(x) \in L_2$$

Motivation

Notions: a

Reminder

Algorithms and

Turing machines

Problems, soluti and complexity

Complexity cla

Upper and lowe

P and NP

hounds

Polvnomia

reductions

NP-comple

Beyond NP

Oracle TMs

and the

Polynomial

Hierarchy

Literature

Basic

Rationale: it cannot be harder to decide L_1 than L_2

- *L* is hard for a class C (*C*-hard) if all languages of this class can be reduced to *L*.
- *L* is complete for *C* (*C*-complete) if *L* is *C*-hard and $L \in C$.

PSPACE

There are problems even more difficult than NP and co-NP...

Motivation

Reminder Beyond NP

The class co-NP The class PSPACE

Other classes

Oracle TMs and the Polynomial

Hierarchy

Literature

BURG

NE

Basic Notions: a

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (... as all other deterministic classes)
- PSPACE is identical to NPSPACE (because) non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space: Savitch's Theorem)
- NP⊂PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NPCNPSPACE) April 24, 2018 Nebel, Lindner, Engesser - KR&R 16/29

this is true.

• •	E-completeness) or language) is PSPACE-comple r problems in PSPACE can be p	polynomially Beyond I The class o The class P
problems in PSPACE	complete problems are the "hard (similar to NP-completeness). [¬] than NP-complete problems fro	They Polynom Hierarch
equivalence problem Instance: Two no A ₂ .	PACE-complete problem is the N n-deterministic finite state auton	nata A_1 and
identica	•••	

Basic OTMs allow us to define a more general type of reduction Notions: a Reminder Idea: The "classical" reduction can be seen as calling a Beyond NF subroutine once. Oracle TMs and the • L_1 is Turing-reducible to L_2 , symbolically $L_1 <_T L_2$, if there Polynomia Hierarchy exists a poly-time OTM that decides L_1 by using an oracle Oracle Turing machines for L_2 . Turing reduction Complexity clas Polynomial reducibility implies Turing reducibility, but not based on OTMs OBE vice versa! Literature NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent! Turing reducibility can also be applied to general search problems! BURG NE Nebel, Lindner, Engesser - KR&R 22/29

Quantified Boolean formulae: definition Motivation Basic Notions: a The evaluation problem of QBF generalizes both the satisfiability Reminder and validity/tautology problems of propositional logic. Beyond NP The latter are NP-complete and co-NP-complete, resp., whereas Oracle TMs and the the former is PSPACE-complete. Polynomial Hierarchy Oracle Turing Example machines Complexity clas based on OTMs The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true. OBE Literature Example The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false. BURG

27 / 29

