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Why first-order logic (FOL)?

In propositional logic, the only building blocks are atomic
propositions.
We cannot talk about the internal structures of these
propositions.
Example:

All CS students know formal logic
Peter is a CS student
Therefore, Peter knows formal logic

. . . not possible in propositional logic
Idea: We introduce predicates, functions, object variables
and quantifiers.
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Syntax

variable symbols: x,y,z, . . .
n-ary function symbols: f ,g, . . .
constant symbols: a,b,c, . . .
n-ary predicate symbols: P,Q, . . .
logical symbols: ∀, ∃, =, ¬, ∧, . . .

Terms t ::= x variable
| f (t1, . . . , tn) function application
| a constant

Formulae ϕ ::= P(t1, . . . , tn) atomic formulae
| t = t′ identity formulae
| . . . propositional connectives
| ∀xϕ ′ universal quantification
| ∃xϕ ′ existential quantification

Ground term, etc.: term, etc. without variable occurrences
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Semantics: idea

In FOL, the universe of discourse consists of objects: we
consider functions and relations over these objects.
Function symbols are mapped to functions, predicate
symbols are mapped to relations, and terms to objects.
Notation: Instead of I(x) we write xI .
Note: Usually one considers all possible non-empty
universes. (However, sometimes the interpretations are
restricted to particular domains, e.g. integers or real
numbers.)
Satisfiability and validity is then considered wrt. all these
universes.
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Formal semantics: interpretations

Interpretations: I = 〈D, ·I〉 with D being an arbitrary non-empty
set and ·I being a function which maps

n-ary function symbols f to n-ary functions fI ∈ [Dn→D],
constant symbols a to objects aI ∈ D, and
n-ary predicates P to n-ary relations PI ⊆Dn.

Interpretation of ground terms:

(f (t1, . . . , tn))I = fI (t1I , . . . , tnI ) ( ∈ D)

Truth of ground atoms:

I |= P(t1, . . . , tn) iff 〈t1I , . . . , tnI〉 ∈ PI
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Examples

D = {d1, . . . ,dn},n≥ 2
aI = d1
bI = d2

CatI = {d1}
RedI = D
I |= Red(b)
I 6|= Cat(b)

D = {1,2,3, . . .}
1I = 1
2I = 2

...
evenI = {2,4,6, . . .}
succI = {(1 7→ 2), (2 7→ 3), . . .}
I 6|= even(3)
I |= even(succ(3))
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Formal semantics: variable assignments

V is the set of variables. Functions α : V →D are called
variable assignments.
Notation: α [x/d] is identical to α except for x where
α [x/d](x) = d.
Interpretation of terms under I,α :

xI,α = α(x)
aI,α = aI

(f (t1, . . . , tn))I,α = fI (t1I,α , . . . , tnI,α )

Truth of atomic formulae:

I,α |= P(t1, . . . , tn) iff 〈t1I,α , . . . , tnI,α〉 ∈ PI

Example (cont’d):
α = {x 7→ d1,y 7→ d2} I,α |= Red(x) I,α [y/d1] |= Cat(y)
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Formal semantics: truth

Truth of ϕ under I and α (I,α |= ϕ) is defined as follows.

I,α |= P(t1, . . . , tn) iff 〈t1I,α , . . . , tnI,α〉 ∈ PI

I,α |= t1 = t2 iff t1I,α = t2I,α

I,α |= ¬ϕ iff I,α 6|= ϕ

I,α |= ϕ ∧ψ iff I,α |= ϕ and I,α |= ψ

I,α |= ϕ ∨ψ iff I,α |= ϕ or I,α |= ψ

I,α |= ϕ → ψ iff ifI,α |= ϕ, thenI,α |= ψ

I,α |= ϕ ↔ ψ iff I,α |= ϕ iffI,α |= ψ

I,α |= ∀x ϕ iff I,α [x/d] |= ϕ for all d ∈ D
I,α |= ∃x ϕ iff I,α [x/d] |= ϕ for some d ∈ D
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Examples

D = {d1, . . . ,dn}, n> 1
aI = d1
bI = d1

CatI = {d1}
RedI = D

α = {(x 7→ d1), (y 7→ d2)}

Θ =
{

Cat(a),Cat(b)
∀x(Cat(x)→ Red(x))

}

Questions:

I,α |= Cat(b)∨¬Cat(b)?

Yes
I,α |= Cat(x)→
Cat(x)∨Cat(y)?
Yes
I,α |= Cat(x)→ Cat(y)?
No
I,α |= Cat(a)∧Cat(b)?
Yes
I,α |= ∀x(Cat(x)→
Red(x))?
Yes
I,α |= Θ? Yes
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Terminology

I,α is a model of ϕ iff
I,α |= ϕ.

A formula can be satisfiable, unsatisfiable, falsifiable, valid, . . .

Formulae ϕ and ψ are logically equivalent (symb.: ϕ ≡ ψ) iff for
all I,α :

I,α |= ϕ iff I,α |= ψ.

Note: P(x) 6≡ P(y)!

Logical implication is also analogous to propositional logic:

Θ |= ϕ iff for all I,α s.t. I,α |= Θ also I,α |= ϕ.
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Free and bound variables

Variables can be free or bound (by a quantifier) in a formula:

free(x) = {x}
free(f (t1, . . . , tn)) = free(t1)∪·· ·∪ free(tn)

free(t1 = t2) = free(t1)∪ free(t2)
free(P(t1, . . . , tn)) = free(t1)∪·· ·∪ free(tn)

free(¬ϕ) = free(ϕ)
free(ϕ ∗ψ) = free(ϕ)∪ free(ψ), for ∗ = ∨,∧,→,↔
free(Qxϕ) = free(ϕ)\{x}, for Q = ∀,∃

Example: ∀x(R(y,z)∧∃y(¬P(y,x)∨R(y,z)))
Which occurrences are free, which are not free?
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Open & closed formulae

Formulae without free variables are called closed formulae
or sentences. Formulae with free variables are called open
formulae.

Closed formulae are all we need when we want to state
something about the world. Open formulae (and variable
assignments) are only necessary for technical reasons
(semantics of ∀ and ∃).
Note that logical equivalence, satisfiability, and entailment
are independent from variable assignments if we consider
only closed formulae.
For closed formulae, we omit α in connection with |=:

I |= ϕ.
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(semantics of ∀ and ∃).

Note that logical equivalence, satisfiability, and entailment
are independent from variable assignments if we consider
only closed formulae.
For closed formulae, we omit α in connection with |=:

I |= ϕ.
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Prenex Normal Form

The prenex normal form of a FOL formula has the following form:

quantifier prefix + (quantifier free) matrix

Generate prenex normal form:
1 Eliminate→ and↔.
2 Move ¬ inside.
3 Moving quantifiers out (using a number of equivalences).

Theorem
For each FOL formula, an equivalent formula in prenex normal
form exists and can be effectively computed.
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Skolemization

We can further simplify formulae by eliminating existential
quantifiers using fresh function symbols (Skolem functions).

Theorem (Skolem normal form)

Let ϕ be a closed formula in prenex normal form with all
variables pairwise distinct of the form ϕ = ∀x1 . . .∀xi∃yψ . Let gi
be an i-ary function symbols not appearing in ϕ .

Then ϕ is satisfiable iff

ϕ
′ = ∀x1 . . .∀xiψ [y/gi(x1, . . . ,xi)]

is satisfiable.

Proof idea.
For each assignment to x1 . . .xi , there is a value of y[= g(x1, . . . ,xi )]
and vice versa.
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Skolem normal form

Skolem Normal Form
Prenex normal form without existential quantifiers.
Notation: ϕ∗ is SNF of ϕ

Theorem
For each closed formula ϕ , a corresponding SNF ϕ∗ can be
effectively computed.

Example

∃x ((∀xp(x))∧¬q(x))
∃y ((∀xp(x))∧¬q(y))
∃y (∀x (p(x)∧¬q(y)))
∀x (p(x)∧¬q(g0))

Note: SNF is not unique
Example: ∃x (P(x))∧∀y (Q(y))
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Reducing FOL satisfiability to propositional
satisfiability . . .

Idea 1: We use one particular interpretation which has as the
universe of discourse all possible ground terms – and we add
one constant if we do not have already one Herbrand universe

Example: ∀x∀y(¬P(x,y)∨R(g2(x,y),x))
DH = {a0,g2(a0,a0),g2(a0,g2(a0,a0)), . . .}

Idea 2: Function symbols are interpreted syntactically, predicate
symbols are interpreted arbitrarily over this universe (each
ground atom gets a truth value):  Herbrand interpretation

aI = a

(f (t1, . . . , tn))I = f (t1, . . . , tn)

I could then be defined such that, e.g., I 6|= P(a0,a0),
I 6|= P(a0,g2(a0,a0)), etc.
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Herbrand models and Herbrand expansions

Theorem
A formula ϕ has a model iff it has a Herbrand model.

Idea 3: We expand each SNF-formula by substituting all
variables by all possible terms Herbrand expansion (E(ϕ))

Example: ¬P(a0,a0)∨R(g2(a0,a0),a0),¬P(a0,g2(a0,a0))∨
R(g2(a0,g2(a0,a0)),a0), . . .

Theorem
A formula ϕ is satisfiable if E(ϕ) is satisfiable.
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A reduction to a satisfiability problem with
infinitely many formulae

Note that the Herbrand universe can be infinite, therefore
E(ϕ) can be infinite!

If the Herbrand base is finite there is no problem (well, . . . )
Use E(ϕ) in a “lazy” way, expand only as needed
Semi-decision method for unsatisfiability
In fact, unsatisfiability (and validity) in FOL is only
semi-decidable (use e.g. PCP to prove)!
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Further theorems

Some corollaries from the previous theorems:

Theorem (Compactness)

Let Φ∪{ψ} be a set of closed formulae.
(a) Φ |= ψ iff there exists a finite subset Φ′ ⊆ Φ s. t. Φ′ |= ψ .
(b) Φ is satisfiable iff each finite subset Φ′ ⊆ Φ is satisfiable.

Theorem (Löwenheim-Skolem)

Each countable set of closed formulae that is satisfiable is
satisfiable on a countable domain.
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