Principles of
 Knowledge Representation and Reasoning

Predicate logic

Bernhard Nebel, Felix Lindner, and Thorsten Engesser

April 24, 2018

Motivation

Why first-order logic (FOL)?

- In propositional logic, the only building blocks are atomic propositions.
- Example:
- All CS students know formal logic
- Peter is a CS student
- Therefore, Peter knows formal logic
... not possible in propositional logic
- Idea: We introduce predicates, functions, object variables and quantifiers.

Syntax

Further
Theorems
Literature

Syntax

Motivation

- variable symbols: x, y, z, \ldots
- n-ary function symbols: f, g, \ldots
- constant symbols: a, b, c, \ldots
- n-ary predicate symbols: P, Q, \ldots
- logical symbols: $\forall, \exists,=, \neg, \wedge, \ldots$

Syntax
Semantics
Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Syntax

Motivation

- variable symbols: x, y, z, \ldots
- n-ary function symbols: f, g, \ldots
- constant symbols: a, b, c, \ldots
- n-ary predicate symbols: P, Q, \ldots
- logical symbols: $\forall, \exists,=, \neg, \wedge, \ldots$

Terms

$$
t \quad::=x
$$

variable
function application
constant

Formulae

$\varphi \quad$| $::=P\left(t_{1}, \ldots, t_{n}\right)$ | atomic formulae | |
| :--- | :--- | :--- |
| | $t=t^{\prime}$ | identity formulae |
| \ldots | propositional connectives | |
| $\forall x \varphi^{\prime}$ | universal quantification | |
| $\exists x \varphi^{\prime}$ | existential quantification | |

Ground term, etc.: term, etc. without variable occurrences

Semantics

Free and Bound
Variables
Open and Closed
Formulae

Herbrand
interpretations
Further
Theorems
Literature

Semantics: idea

- In FOL, the universe of discourse consists of objects: we consider functions and relations over these objects.
- Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- Notation: Instead of $\mathcal{I}(x)$ we write $x^{\mathcal{I}}$.
- Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)

Variable
Assignments
Definition of Truth
Terminology
Free and Bound

- Satisfiability and validity is then considered wrt. all these universes.

Formal semantics: interpretations

Interpretations: $\mathcal{I}=\left\langle\mathcal{D}, \cdot^{\mathcal{I}}\right\rangle$ with \mathcal{D} being an arbitrary non-empty set and ${ }^{\mathcal{I}}$ being a function which maps

- n-ary function symbols f to n-ary functions $f^{\mathcal{I}} \in\left[\mathcal{D}^{n} \rightarrow \mathcal{D}\right]$,
- constant symbols a to objects $a^{\mathcal{I}} \in \mathcal{D}$, and
- n-ary predicates P to n-ary relations $P^{\mathcal{I}} \subseteq \mathcal{D}^{n}$.

Interpretation of ground terms:

$$
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{\mathcal{I}}=f^{\mathcal{I}}\left(t_{1}{ }^{\mathcal{I}}, \ldots, t_{n}{ }^{\mathcal{I}}\right)(\in \mathcal{D})
$$

Truth of ground atoms:

$$
\mathcal{I} \vDash P\left(t_{1}, \ldots, t_{n}\right) \quad \text { iff } \quad\left\langle t_{1}{ }^{\mathcal{I}}, \ldots, t_{n}{ }^{\mathcal{I}}\right\rangle \in P^{\mathcal{I}}
$$

Examples

$$
\begin{aligned}
\mathcal{D} & =\left\{d_{1}, \ldots, d_{n}\right\}, n \geq 2 \\
\mathrm{a}^{\mathcal{I}} & =d_{1} \\
\mathrm{~b}^{\mathcal{I}} & =d_{2} \\
\mathrm{Cat}^{\mathcal{I}} & =\left\{d_{1}\right\} \\
\operatorname{Red}^{\mathcal{I}} & =\mathcal{D} \\
\mathcal{I} & =\operatorname{Red}(\mathrm{b}) \\
\mathcal{I} & \not \models \operatorname{Cat}(\mathrm{b})
\end{aligned}
$$

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed
Formulae
Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

$$
\begin{array}{rlrl}
\mathcal{D} & =\left\{d_{1}, \ldots, d_{n}\right\}, n \geq 2 & \mathcal{D} & =\{1,2,3, \ldots\} \\
\mathrm{a}^{\mathcal{I}} & =d_{1} & 1^{\mathcal{I}} & =1 \\
\mathrm{~b}^{\mathcal{I}} & =d_{2} & 2^{\mathcal{I}} & =2 \\
\mathrm{Cat}^{\mathcal{I}} & =\left\{d_{1}\right\} & & \vdots \\
\operatorname{Red}^{\mathcal{I}} & =\mathcal{D} & \operatorname{even}^{\mathcal{I}} & =\{2,4,6, \ldots\} \\
\mathcal{I} & \neq \operatorname{Red}(b) & \operatorname{succ}^{\mathcal{I}} & =\{(1 \mapsto 2),(2 \mapsto 3), \ldots\} \\
\mathcal{I} & \not \models \operatorname{Cat}(b) & \mathcal{I} & \not \models \operatorname{even}(3) \\
& & \mathcal{I} & \neq \operatorname{even}(\operatorname{succ}(3))
\end{array}
$$

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms

Formal semantics: variable assignments

V is the set of variables. Functions $\alpha: V \rightarrow \mathcal{D}$ are called variable assignments.

Interpretation of terms under \mathcal{I}, α :

$$
\begin{aligned}
x^{\mathcal{I}, \alpha} & =\alpha(x) \\
a^{\mathcal{I}, \alpha} & =a^{\mathcal{I}} \\
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{\mathcal{I}, \alpha} & =f^{\mathcal{I}}\left(t_{1} \mathcal{I}^{\mathcal{I}, \alpha}, \ldots, t_{n}^{\mathcal{I}, \alpha}\right)
\end{aligned}
$$

Example (cont'd):
$\alpha=\left\{x \mapsto d_{1}, y \mapsto d_{2}\right\} \quad \mathcal{I}, \alpha=\operatorname{Red}(x) \quad \mathcal{I}, \alpha\left[y / d_{1}\right] \equiv \operatorname{Cat}(y)$

Formal semantics: truth

Truth of φ under \mathcal{I} and $\alpha(\mathcal{I}, \alpha=\varphi)$ is defined as follows.

$$
\begin{array}{ll}
\mathcal{I}, \alpha \vDash P\left(t_{1}, \ldots, t_{n}\right) & \text { iff }\left\langle t_{1}{ }^{\mathcal{I}, \alpha}, \ldots, t_{n}{ }^{\mathcal{I}, \alpha}\right\rangle \in P^{\mathcal{I}} \\
\mathcal{I}, \alpha \vDash t_{1}=t_{2} & \text { iff } t_{1} \mathcal{I}, \alpha=t_{2}{ }^{\mathcal{I}, \alpha} \\
\mathcal{I}, \alpha \vDash \neg \varphi & \text { iff } \mathcal{I}, \alpha \neq \varphi \\
\mathcal{I}, \alpha \vDash \varphi \wedge \psi & \text { iff } \mathcal{I}, \alpha=\varphi \text { and } \mathcal{I}, \alpha \mid=\psi \\
\mathcal{I}, \alpha \vDash \varphi \vee \psi & \text { iff } \mathcal{I}, \alpha=\varphi \text { or } \mathcal{I}, \alpha=\psi \\
\mathcal{I}, \alpha \vDash \varphi \rightarrow \psi & \text { iff if } \mathcal{I}, \alpha=\varphi, \text { then } \mathcal{I}, \alpha=\psi \\
\mathcal{I}, \alpha \vDash \varphi \leftrightarrow \psi & \text { iff } \mathcal{I}, \alpha=\varphi \text { iff } \mathcal{I}, \alpha=\psi \\
\mathcal{I}, \alpha \vDash \forall x \varphi & \text { iff } \mathcal{I}, \alpha[x / d]=\varphi \text { for all } d \in \mathcal{D} \\
\mathcal{I}, \alpha \vDash \exists x \varphi & \text { iff } \mathcal{I}, \alpha[x / d]=\varphi \text { for some } d \in \mathcal{D}
\end{array}
$$

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Motivation

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Motivation

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Motivation

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Motivation

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound

Open and Closed Formulae

Normal forms

Examples

Questions:

Motivation

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound

Open and Closed Formulae

Normal forms

Examples

Questions:

Motivation

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Examples

Questions:

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature
$\Theta=\left\{\begin{array}{l}\operatorname{Cat}(a), \operatorname{Cat}(b) \\ \forall x(\operatorname{Cat}(x) \rightarrow \operatorname{Red}(x))\end{array}\right\}$

$$
\begin{aligned}
& \mathcal{I}, \alpha \mid=\operatorname{Cat}(b) \vee \neg \operatorname{Cat}(b) ? \\
& \text { Yes } \\
& \mathcal{I}, \alpha \mid=\operatorname{Cat}(x) \rightarrow \\
& \operatorname{Cat}(x) \vee \operatorname{Cat}(y) ? \\
& \text { Yes } \\
& \mathcal{I}, \alpha=\operatorname{Cat}(x) \rightarrow \operatorname{Cat}(y) \text { ? } \\
& \text { No }
\end{aligned}
$$

$$
\mathcal{I}, \alpha \mid=\operatorname{Cat}(a) \wedge \operatorname{Cat}(b) ?
$$

Yes

$$
\mathcal{I}, \alpha \mid \forall x(\operatorname{Cat}(x) \rightarrow
$$

$$
\operatorname{Red}(x)) ?
$$

Yes

$$
\mathcal{I}, \alpha \mid=\Theta ?
$$

Examples

Questions:

Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature
$\Theta=\left\{\begin{array}{l}\operatorname{Cat}(a), \operatorname{Cat}(b) \\ \forall x(\operatorname{Cat}(x) \rightarrow \operatorname{Red}(x))\end{array}\right\}$

$$
\begin{aligned}
& \mathcal{I}, \alpha \mid=\operatorname{Cat}(b) \vee \neg \operatorname{Cat}(b) ? \\
& \text { Yes } \\
& \mathcal{I}, \alpha \mid=\operatorname{Cat}(x) \rightarrow \\
& \operatorname{Cat}(x) \vee \operatorname{Cat}(y) \text { ? } \\
& \text { Yes } \\
& \mathcal{I}, \alpha \mid=\operatorname{Cat}(x) \rightarrow \operatorname{Cat}(y) \text { ? } \\
& \text { No } \\
& \mathcal{I}, \alpha \mid=\operatorname{Cat}(a) \wedge \operatorname{Cat}(b) \text { ? } \\
& \text { Yes } \\
& \mathcal{I}, \alpha \mid \forall x(\operatorname{Cat}(x) \rightarrow \\
& \operatorname{Red}(x)) \text { ? } \\
& \text { Yes } \\
& \mathcal{I}, \alpha \mid=\Theta \text { ? Yes }
\end{aligned}
$$

Terminology

Motivation

Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Terminology

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Terminology

Motivation
Syntax
Semantics
Interpretations
Variable
Assignments
Definition of Truth
Terminology
Free and Bound
Variables
Open and Closed Formulae

Normal forms
Herbrand

Terminology

\mathcal{I}, α is a model of φ iff

$$
\mathcal{I}, \alpha \neq \varphi
$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid, ...
Formulae φ and ψ are logically equivalent (symb.: $\varphi \equiv \psi$) iff for all \mathcal{I}, α :

$$
\mathcal{I}, \alpha \vDash \varphi \text { iff } \mathcal{I}, \alpha \mid=\psi .
$$

Note: $\mathrm{P}(\mathrm{x}) \not \equiv \mathrm{P}(\mathrm{y})$!
Logical implication is also analogous to propositional logic:

$$
\Theta \vDash \varphi \text { iff for all } \mathcal{I}, \alpha \text { s.t. } \mathcal{I}, \alpha \models \Theta \text { also } \mathcal{I}, \alpha \models \varphi .
$$

Free and bound variables

Variables can be free or bound (by a quantifier) in a formula:

$$
\begin{aligned}
\operatorname{free}(x) & =\{x\} \\
\operatorname{free}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{free}\left(t_{1}\right) \cup \cdots \cup \operatorname{free}\left(t_{n}\right) \\
\operatorname{free}\left(t_{1}=t_{2}\right) & =\operatorname{free}\left(t_{1}\right) \cup \operatorname{free}\left(t_{2}\right) \\
\operatorname{free}\left(P\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{free}\left(t_{1}\right) \cup \cdots \cup \operatorname{free}\left(t_{n}\right) \\
\operatorname{free}(\neg \varphi) & =\operatorname{free}(\varphi) \\
\operatorname{free}(\varphi * \psi) & =\operatorname{free}(\varphi) \cup \operatorname{free}(\psi), \text { for } *=\vee, \wedge, \rightarrow, \leftrightarrow \\
\operatorname{free}(Q x \varphi) & =\operatorname{free}(\varphi) \backslash\{x\}, \text { for } Q=\forall, \exists
\end{aligned}
$$

Semantics

Free and bound variables

Variables can be free or bound (by a quantifier) in a formula:

$$
\begin{aligned}
\operatorname{free}(x) & =\{x\} \\
\operatorname{free}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{free}\left(t_{1}\right) \cup \cdots \cup \text { free }\left(t_{n}\right) \\
\operatorname{free}\left(t_{1}=t_{2}\right) & =\operatorname{free}\left(t_{1}\right) \cup \operatorname{free}\left(t_{2}\right) \\
\operatorname{free}\left(P\left(t_{1}, \ldots, t_{n}\right)\right) & =\operatorname{free}\left(t_{1}\right) \cup \cdots \cup \operatorname{free}\left(t_{n}\right) \\
\operatorname{free}(\neg \varphi) & =\operatorname{free}(\varphi) \\
\operatorname{free}(\varphi * \psi) & =\operatorname{free}(\varphi) \cup \operatorname{free}(\psi), \text { for } *=\vee, \wedge, \rightarrow, \leftrightarrow \\
\operatorname{free}(Q x \varphi) & =\operatorname{free}(\varphi) \backslash\{x\}, \text { for } Q=\forall, \exists
\end{aligned}
$$

Example: $\forall x(R(y, z) \wedge \exists y(\neg P(y, x) \vee R(y, z)))$
Which occurrences are free, which are not free?

Open \& closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.

Open \& closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable assignments) are only necessary for technical reasons (semantics of \forall and \exists).

Open \& closed formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable assignments) are only necessary for technical reasons (semantics of \forall and \exists).
- Note that logical equivalence, satisfiability, and entailment are independent from variable assignments if we consider only closed formulae.

Open \& closed formulae

■ Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.

- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable assignments) are only necessary for technical reasons (semantics of \forall and \exists).
- Note that logical equivalence, satisfiability, and entailment are independent from variable assignments if we consider only closed formulae.
- For closed formulae, we omit α in connection with $\mid=$:

$$
\mathcal{I} \vDash \varphi .
$$

Normal forms

Further
Theorems

Prenex Normal Form

The prenex normal form of a FOL formula has the following form:
quantifier prefix + (quantifier free) matrix

Prenex Normal Form

The prenex normal form of a FOL formula has the following form:
quantifier prefix + (quantifier free) matrix

Generate prenex normal form:
1 Eliminate \rightarrow and \leftrightarrow.
2 Move \neg inside.
3 Moving quantifiers out (using a number of equivalences).

Prenex Normal Form

The prenex normal form of a FOL formula has the following form:
quantifier prefix + (quantifier free) matrix

Generate prenex normal form:
1 Eliminate \rightarrow and \leftrightarrow.

Syntax
Semantics
Normal forms
Herbrand
interpretations
Further
Theorems
Literature

2 Move \neg inside.
3 Moving quantifiers out (using a number of equivalences).

Theorem

For each FOL formula, an equivalent formula in prenex normal form exists and can be effectively computed.

Skolemization

We can further simplify formulae by eliminating existential quantifiers using fresh function symbols (Skolem functions).

Theorem (Skolem normal form)

Let φ be a closed formula in prenex normal form with all variables pairwise distinct of the form $\varphi=\forall x_{1} \ldots \forall x_{i} \exists y \psi$. Let g_{i} be an i-ary function symbols not appearing in φ.

Skolemization

We can further simplify formulae by eliminating existential quantifiers using fresh function symbols (Skolem functions).

Theorem (Skolem normal form)

Let φ be a closed formula in prenex normal form with all variables pairwise distinct of the form $\varphi=\forall x_{1} \ldots \forall x_{i} \exists y \psi$. Let g_{i} be an i-ary function symbols not appearing in φ.

Semantics

Normal forms
Herbrand interpretations

Further
Theorems
Literature

Then φ is satisfiable iff

$$
\varphi^{\prime}=\forall x_{1} \ldots \forall x_{i} \psi\left[y / g_{i}\left(x_{1}, \ldots, x_{i}\right)\right]
$$

is satisfiable.

Skolemization

We can further simplify formulae by eliminating existential quantifiers using fresh function symbols (Skolem functions).

Theorem (Skolem normal form)

Let φ be a closed formula in prenex normal form with all variables pairwise distinct of the form $\varphi=\forall x_{1} \ldots \forall x_{i} \exists y \psi$. Let g_{i} be an i-ary function symbols not appearing in φ.

Semantics
Normal forms
Herbrand interpretations

Further
Theorems
Literature

Then φ is satisfiable iff

$$
\varphi^{\prime}=\forall x_{1} \ldots \forall x_{i} \psi\left[y / g_{i}\left(x_{1}, \ldots, x_{i}\right)\right]
$$

is satisfiable.

Proof idea.

For each assignment to $x_{1} \ldots x_{i}$, there is a value of $y\left[=g\left(x_{1}, \ldots, x_{i}\right)\right]$ and vice versa.

Skolem normal form

Skolem Normal Form

Prenex normal form without existential quantifiers. Notation: φ^{*} is SNF of φ

Skolem normal form

Skolem Normal Form

Prenex normal form without existential quantifiers.
Notation: φ^{*} is SNF of φ

Theorem

For each closed formula φ, a corresponding $\operatorname{SNF} \varphi^{*}$ can be effectively computed.

Skolem normal form

Skolem Normal Form

Prenex normal form without existential quantifiers.
Notation: φ^{*} is SNF of φ

Theorem

For each closed formula φ, a corresponding $\operatorname{SNF} \varphi^{*}$ can be effectively computed.

Motivation
Syntax
Semantics
Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Example

$$
\exists \mathrm{x}((\forall \mathrm{x} \mathrm{p}(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{x}))
$$

Skolem normal form

Skolem Normal Form

Prenex normal form without existential quantifiers.
Notation: φ^{*} is SNF of φ

Theorem

For each closed formula φ, a corresponding $\operatorname{SNF} \varphi^{*}$ can be effectively computed.

Motivation
Syntax
Semantics
Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Example

$$
\begin{aligned}
& \exists \mathrm{x}((\forall \mathrm{xp}(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{x})) \\
& \exists \mathrm{y}((\forall \mathrm{x} p(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{y}))
\end{aligned}
$$

Skolem normal form

Skolem Normal Form

Prenex normal form without existential quantifiers.
Notation: φ^{*} is SNF of φ

Theorem

For each closed formula φ, a corresponding $\operatorname{SNF} \varphi^{*}$ can be effectively computed.

Motivation
Syntax
Semantics
Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Example

$$
\begin{aligned}
& \exists \mathrm{x}((\forall \mathrm{x} \mathrm{p}(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{x})) \\
& \exists \mathrm{y}((\forall \mathrm{x} \mathrm{p}(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{y})) \\
& \exists \mathrm{y}(\forall \mathrm{x}(\mathrm{p}(\mathrm{x}) \wedge \neg \mathrm{q}(\mathrm{y})))
\end{aligned}
$$

Skolem normal form

Skolem Normal Form

Prenex normal form without existential quantifiers.
Notation: φ^{*} is SNF of φ

Theorem

For each closed formula φ, a corresponding $\operatorname{SNF} \varphi^{*}$ can be effectively computed.

Motivation
Syntax
Semantics
Normal forms
Herbrand
interpretations
Further
Theorems
Literature

Example

$$
\begin{aligned}
& \exists \mathrm{x}((\forall \mathrm{x} \mathrm{p}(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{x})) \\
& \exists \mathrm{y}((\forall \mathrm{x} \mathrm{p}(\mathrm{x})) \wedge \neg \mathrm{q}(\mathrm{y})) \\
& \exists \mathrm{y}(\forall \mathrm{x}(\mathrm{p}(\mathrm{x}) \wedge \neg \mathrm{q}(\mathrm{y}))) \\
& \forall \mathrm{x}\left(\mathrm{p}(\mathrm{x}) \wedge \neg \mathrm{q}\left(\mathrm{~g}_{0}\right)\right)
\end{aligned}
$$

Herbrand interpretations

Further
Theorems

Reducing FOL satisfiability to propositional satisfiability ...

Idea 1: We use one particular interpretation which has as the universe of discourse all possible ground terms - and we add one constant if we do not have already one \rightsquigarrow Herbrand universe

Reducing FOL satisfiability to propositional satisfiability ...

Idea 1: We use one particular interpretation which has as the universe of discourse all possible ground terms - and we add one constant if we do not have already one \rightsquigarrow Herbrand universe

Example: $\forall x \forall y\left(\neg P(x, y) \vee R\left(g_{2}(x, y), x\right)\right)$

Reducing FOL satisfiability to propositional satisfiability ...

Idea 1: We use one particular interpretation which has as the universe of discourse all possible ground terms - and we add one constant if we do not have already one \rightsquigarrow Herbrand universe

$$
\begin{array}{ll}
\text { Example: } & \forall x \forall y\left(\neg P(x, y) \vee R\left(g_{2}(x, y), x\right)\right) \\
& \mathcal{D}^{H}=\left\{a_{0}, g_{2}\left(a_{0}, a_{0}\right), g_{2}\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right), \ldots\right\}
\end{array}
$$

Reducing FOL satisfiability to propositional satisfiability ...

Idea 1: We use one particular interpretation which has as the universe of discourse all possible ground terms - and we add one constant if we do not have already one \rightsquigarrow Herbrand universe

$$
\begin{array}{ll}
\text { Example: } & \forall x \forall y\left(\neg P(x, y) \vee R\left(g_{2}(x, y), x\right)\right) \\
& \mathcal{D}^{H}=\left\{a_{0}, g_{2}\left(a_{0}, a_{0}\right), g_{2}\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right), \ldots\right\}
\end{array}
$$

Idea 2: Function symbols are interpreted syntactically, predicate symbols are interpreted arbitrarily over this universe (each ground atom gets a truth value): \rightsquigarrow Herbrand interpretation

Reducing FOL satisfiability to propositional satisfiability ...

Idea 1: We use one particular interpretation which has as the universe of discourse all possible ground terms - and we add one constant if we do not have already one \rightsquigarrow Herbrand universe

Example: $\forall x \forall y\left(\neg P(x, y) \vee R\left(g_{2}(x, y), x\right)\right)$

$$
\mathcal{D}^{H}=\left\{a_{0}, g_{2}\left(a_{0}, a_{0}\right), g_{2}\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right), \ldots\right\}
$$

Idea 2: Function symbols are interpreted syntactically, predicate symbols are interpreted arbitrarily over this universe (each ground atom gets a truth value): \rightsquigarrow Herbrand interpretation

$$
\begin{aligned}
a^{\mathcal{I}} & =a \\
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{\mathcal{I}} & =f\left(t_{1}, \ldots, t_{n}\right)
\end{aligned}
$$

\mathcal{I} could then be defined such that, e.g., $\mathcal{I} \not \vDash P\left(a_{0}, a_{0}\right)$, $\mathcal{I} \not \vDash P\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right)$, etc.

Herbrand models and Herbrand expansions

Theorem

A formula φ has a model iff it has a Herbrand model.
Motivation
Syntax
Semantics

Normal forms

Herbrand
interpretations
Further
Theorems

Literature

一 $=$

Herbrand models and Herbrand expansions

Theorem

A formula φ has a model iff it has a Herbrand model.

Idea 3: We expand each SNF-formula by substituting all variables by all possible terms \rightsquigarrow Herbrand expansion $(E(\varphi))$

Herbrand models and Herbrand expansions

Theorem

A formula φ has a model iff it has a Herbrand model.

Idea 3: We expand each SNF-formula by substituting all variables by all possible terms \rightsquigarrow Herbrand expansion $(E(\varphi))$

Example: $\neg P\left(a_{0}, a_{0}\right) \vee R\left(g_{2}\left(a_{0}, a_{0}\right), a_{0}\right), \neg P\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right) \vee$ $R\left(g_{2}\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right), a_{0}\right), \ldots$

Herbrand models and Herbrand expansions

Theorem

A formula φ has a model iff it has a Herbrand model.

Idea 3: We expand each SNF-formula by substituting all variables by all possible terms \rightsquigarrow Herbrand expansion $(E(\varphi))$

Syntax
Semantics
Normal forms
Herbrand interpretations

Example: $\neg P\left(a_{0}, a_{0}\right) \vee R\left(g_{2}\left(a_{0}, a_{0}\right), a_{0}\right), \neg P\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right) \vee$ $R\left(g_{2}\left(a_{0}, g_{2}\left(a_{0}, a_{0}\right)\right), a_{0}\right), \ldots$

Theorem

A formula φ is satisfiable if $E(\varphi)$ is satisfiable.

A reduction to a satisfiability problem with infinitely many formulae

\square Note that the Herbrand universe can be infinite, therefore $E(\varphi)$ can be infinite!

Normal forms
Herbrand
interpretations

Further
Theorems

A reduction to a satisfiability problem with infinitely many formulae

- Note that the Herbrand universe can be infinite, therefore $E(\varphi)$ can be infinite!
- If the Herbrand base is finite there is no problem (well, ...)

A reduction to a satisfiability problem with infinitely many formulae

- Note that the Herbrand universe can be infinite, therefore $E(\varphi)$ can be infinite!
- If the Herbrand base is finite there is no problem (well, ...)
- Use $E(\varphi)$ in a "lazy" way, expand only as needed

A reduction to a satisfiability problem with infinitely many formulae

- Note that the Herbrand universe can be infinite, therefore $E(\varphi)$ can be infinite!
- If the Herbrand base is finite there is no problem (well, ...)
- Use $E(\varphi)$ in a "lazy" way, expand only as needed
- Semi-decision method for unsatisfiability

A reduction to a satisfiability problem with infinitely many formulae

- Note that the Herbrand universe can be infinite, therefore $E(\varphi)$ can be infinite!
- If the Herbrand base is finite there is no problem (well, ...)
- Use $E(\varphi)$ in a "lazy" way, expand only as needed
- Semi-decision method for unsatisfiability
- In fact, unsatisfiability (and validity) in FOL is only semi-decidable (use e.g. PCP to prove)!

Further Theorems

Further Theorems

Further theorems

Some corollaries from the previous theorems:

Theorem (Compactness)

Let $\Phi \cup\{\psi\}$ be a set of closed formulae.
(a) $\Phi=\psi$ iff there exists a finite subset $\Phi^{\prime} \subseteq \Phi$ s. t. $\Phi^{\prime} \vDash \psi$.
(b) ϕ is satisfiable iff each finite subset $\phi^{\prime} \subseteq \Phi$ is satisfiable.

Further theorems

Some corollaries from the previous theorems:

Theorem (Compactness)

Let $\Phi \cup\{\psi\}$ be a set of closed formulae.
(a) $\Phi=\psi$ iff there exists a finite subset $\Phi^{\prime} \subseteq \Phi$ s.t. $\Phi^{\prime} \vDash \psi$.
(b) ϕ is satisfiable iff each finite subset $\Phi^{\prime} \subseteq \Phi$ is satisfiable.

Theorem (Löwenheim-Skolem)

Each countable set of closed formulae that is satisfiable is satisfiable on a countable domain.

Motivation
Syntax
Semantics
Normal forms
Herbrand
interpretations

Literature

Further
Theorems
Literature

Literature

Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 \& 9).

Volker Sperschneider and Grigorios Antoniou.
Logic - A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1991 (Chapters 1-3).
H.-P. Ebbinghaus, J. Flum, and W. Thomas.

Einführung in die mathematische Logik.
Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
U. Schöning.

Logik für Informatiker.
Spektrum-Verlag.

