Principles of Knowledge Representation and Reasoning Propositional Logic

UNI FREIBURG

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 17, 2018

1 Why Logic?

Why Logic?

Propositional Logic

Syntax

Semantic

Terminology

Why logic?

- Logic is one of the best developed systems for representing knowledge.
- Can be used for analysis, design and specification.
- Understanding formal logic is a prerequisite for understanding most research papers in KR&R.

Why Logic?

tional Logic

Semantics

Terminology

The right logic...

- Logics of different orders (1st, 2nd, ...)
- Modal logics
 - epistemic
 - temporal
 - dynamic (program)
 - multi-modal logics
 - **.**..
- Many-valued logics
- Nonmonotonic logics
- Intuitionistic logics
- ...

Why Logic?

tional Logic

- ,

Semantics

Terminology

The logical approach

- Define a formal language: logical & non-logical symbols, syntax rules
- Provide language with compositional semantics:
 - Fix universe of discourse
 - Specify how the non-logical symbols can be interpreted: interpretation
 - Rules how to combine interpretation of single symbols
 - Satisfying interpretation = model
 - Semantics often entails concept of logical implication / entailment
- Specify a calculus that allows to derive new formulae from old ones – according to the entailment relation

Why Logic?

Propositional Logic

Semantics

Decision

Problems and Resolution

2 Propositional Logic

Why Logic?

Propositional Logic

Syntax

Semantic

Terminology

Propositional logic: main ideas

- Non-logical symbols: propositional variables or atoms
 - representing propositions which cannot be decomposed
 - which can be true or false (for example: "Snow is white", "It rains")
- Logical symbols: propositional connectives such as: and (\(\lambda\), or (\(\nabla\)), and not (\(\nabla\))
- Formulae: built out of atoms and connectives
- Universe of discourse: truth values

Why Logic?

Propositional Logic

Terminology

Decision

Problems and Resolution

3 Syntax

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

Syntax

Countable alphabet Σ of propositional variables: a,b,c,...Propositional formulae are built according to the following rule:

Parentheses can be omitted if no ambiguity arises.

Operator precedence:
$$\neg > \land > \lor > \rightarrow = \leftrightarrow$$
.

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

Language and meta-language

■ $(a \lor b)$ is an expression of the language of propositional logic.

- $\phi ::= a | \dots | (\phi' \leftrightarrow \phi'')$ is a statement about how expressions in the language of propositional logic can be formed. It is stated using meta-language.
- In order to describe how expressions (in this case formulae) can be formed, we use meta-language.
- When we describe how to interpret formulae, we use meta-language expressions.

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

4 Semantics

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

Semantics: idea

- Atomic propositions can be true (1, T) or false (0, F).
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$(a \lor b) \land c$$

is true iff c is true and, additionally, a or b is true.

Logical implication can then be defined as follows:

 φ is implied by a set of formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Why Logic?

Propositional Logic

- ,

Semantics

Terminology

Formal semantics

An interpretation (or truth assignment) over Σ is a function:

$$\mathcal{I} \colon \Sigma \to \{T, F\}.$$

A formula ψ is true under \mathcal{I} or is satisfied by \mathcal{I} (symb. $\mathcal{I} \models \psi$):

$$\mathcal{I} \models a \qquad \text{iff} \qquad \mathcal{I}(a) = \mathcal{T} \\ \qquad \qquad \mathcal{I} \models \top \\ \qquad \qquad \mathcal{I} \not\models \bot \\ \qquad \qquad \mathcal{I} \models \neg \varphi \qquad \text{iff} \qquad \mathcal{I} \not\models \varphi \\ \qquad \mathcal{I} \models \varphi \land \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ and } \mathcal{I} \models \varphi' \\ \qquad \mathcal{I} \models \varphi \lor \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \varphi' \\ \qquad \mathcal{I} \models \varphi \to \varphi' \qquad \text{iff} \qquad \text{if } \mathcal{I} \models \varphi \text{ then } \mathcal{I} \models \varphi' \\ \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \rightarrow \varphi' \\ \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \text{ if and only if } \mathcal{I} \models \varphi' \\ \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \rightarrow \varphi' \\ \qquad \mathcal{I} \models \varphi \leftrightarrow \varphi' \qquad \text{iff} \qquad \mathcal{I} \models \varphi \rightarrow \varphi'$$

Why Logic?

tional Logic

Semantics

Decision

Example

Given

$$\mathcal{I}: a \mapsto T$$
, $b \mapsto F$, $c \mapsto F$, $d \mapsto T$.

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

Why Logic?

Propositional Logic

Synta

Semantics

Terminology

5 Terminology

Why Logic?

Propositional Logic

Syntax

Semantic

Terminology

Terminology

An interpretation \mathcal{I} is a model of φ iff $\mathcal{I} \models \varphi$. A formula φ is

- **satisfiable** if there is an \mathcal{I} such that $\mathcal{I} \models \varphi$;
- unsatisfiable, otherwise; and
- valid if $\mathcal{I} \models \varphi$ for each \mathcal{I} (or tautology);
- falsifiable, otherwise.

Formulae φ and ψ are logically equivalent (symb. $\varphi \equiv \psi$) if for all interpretations \mathcal{I} ,

$$\mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models \psi.$$

Why Logic?

Propositional Logic

.

Semantics

Terminology

Examples

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

 \rightarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$

 \rightarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

- \rightsquigarrow satisfiable: $a \mapsto T, b \mapsto T$
- valid: Consider all interpretations or argue about falsifying ones.

Equivalence? $\neg (a \lor b) \equiv \neg a \land \neg b$

→ Of course, equivalent (de Morgan).

Why Logic?

Propositional Logic

Ojinak

Semantics

Terminology

Some obvious consequences

Proposition

 φ is valid iff $\neg \varphi$ is unsatisfiable.

 φ is satisfiable iff $\neg \varphi$ is falsifiable.

Proposition

 $\varphi \equiv \psi$ iff $\varphi \leftrightarrow \psi$ is valid.

Theorem

If $\varphi \equiv \psi$, and χ' results from substituting φ by ψ in χ , then $\chi' \equiv \chi$.

Why Logic?

tional Logic

Synta

Semantics

Terminology

Some equivalences

simplifications	$oldsymbol{arphi} ightarrow oldsymbol{\psi}$	≡	$\neg \varphi \lor \psi$	$\phi \leftrightarrow \psi$	=	$(arphi ightarrow\psi)\wedge \ (\psi ightarrowarphi)$
idempotency	$\varphi \lor \varphi$	\equiv	φ	$\varphi \wedge \varphi$	\equiv	φ
commutativity	$\varphi \lor \psi$	\equiv	$\psi \lor \varphi$	$\varphi \wedge \psi$	\equiv	$\psi \wedge \varphi$
associativity	$(\varphi \lor \psi) \lor \chi$	\equiv	$\varphi \lor (\psi \lor \chi)$	$(\varphi \wedge \psi) \wedge \chi$	\equiv	$\varphi \wedge (\psi \wedge \chi)$
absorption	$\varphi \lor (\varphi \land \psi)$	\equiv	φ	$\varphi \wedge (\varphi \vee \psi)$	\equiv	φ
distributivity	$\varphi \wedge (\psi \vee \chi)$	\equiv	$(\varphi \wedge \psi) \vee$	$\varphi \lor (\psi \land \chi)$	\equiv	$(\varphi \lor \psi) \land$
			$(\varphi \wedge \chi)$			$(\varphi \lor \chi)$
double negation	$\neg\neg \varphi$	\equiv	φ			
constants	$\neg \top$	\equiv	\perp	$\neg \bot$	\equiv	Τ
De Morgan	$\neg(\varphi \lor \psi)$	\equiv	$\neg \phi \wedge \neg \psi$	$\neg(\phi \wedge \psi)$	\equiv	$\neg \phi \lor \neg \psi$
truth	$\boldsymbol{\varphi} \vee \top$	\equiv	Τ	$\boldsymbol{\varphi} \wedge \top$	\equiv	φ
falsity	$oldsymbol{arphi}eeoldsymbol{\perp}$	\equiv	φ	$oldsymbol{arphi}\wedgeoldsymbol{\perp}$	\equiv	\perp
taut./contrad.	$\phi \lor \neg \phi$	\equiv	Τ	$\phi \wedge \neg \phi$	\equiv	\perp

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

How many different formulae are there ...

...for a given finite alphabet Σ ?

- Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, ...$
- How many different logically distinguishable (not equivalent) formulae?
 - A formula can be characterized by its set of models (if two formulae are not logically equivalent, then their sets of models differ).
 - For Σ with $n = |\Sigma|$, there are 2^n different interpretations.
 - There are $2^{(2^n)}$ different sets of interpretations.
 - There are 2^(2ⁿ) (logical) equivalence classes of formulae.

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

Problems and Resolution

Logical implication

Extension of the relation \models to sets Θ of formulae:

$$\mathcal{I} \models \Theta \text{ iff } \mathcal{I} \models \varphi \text{ for all } \varphi \in \Theta.$$

 ϕ is logically implied by Θ (symbolically $\Theta \models \phi$) iff ϕ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $\mathcal{I} \models \varphi$ for all \mathcal{I} such that $\mathcal{I} \models \Theta$

Some consequences:

- Deduction theorem: $\Theta \cup \{\phi\} \models \psi \text{ iff } \Theta \models \phi \rightarrow \psi$
- Contraposition: $\Theta \cup \{\phi\} \models \neg \psi \text{ iff } \Theta \cup \{\psi\} \models \neg \phi$
- Contradiction: $\Theta \cup \{\phi\}$ is unsatisfiable iff $\Theta \models \neg \phi$

Why Logic?

Propositional Logic

Oyntax

Semantics

Terminology

Normal forms

Terminology:

- Atomic formulae a, negated atomic formulae $\neg a$, truth \top and falsity \bot are literals.
- A disjunction of literals is a clause.
- If \neg only occurs in front of an atom and there are no \rightarrow and \leftrightarrow , the formula is in negation normal form (NNF).

Example: $(\neg a \lor \neg b) \land c$, but not: $\neg (a \land b) \land c$

A conjunction of clauses is in conjunctive normal form (CNF).

Example: $(a \lor b) \land (\neg a \lor c)$

The dual form (disjunction of conjunctions of literals) is in disjunctive normal form (DNF).

Example: $(a \land b) \lor (\neg a \land c)$

Why Logic?

Propositional Logic

Symax

Semantics

Terminology

Negation normal form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \rightarrow and \leftrightarrow by the appropriate equivalences.

Base case: Claim is true for a, $\neg a$, \top , \bot .

Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its NNF $\mathsf{nnf}(\varphi)$.

```
■ \operatorname{nnf}(\varphi \wedge \psi) = (\operatorname{nnf}(\varphi) \wedge \operatorname{nnf}(\psi))

■ \operatorname{nnf}(\varphi \vee \psi) = (\operatorname{nnf}(\varphi) \vee \operatorname{nnf}(\psi))

■ \operatorname{nnf}(\neg(\varphi \wedge \psi)) = (\operatorname{nnf}(\neg\varphi) \vee \operatorname{nnf}(\neg\psi))

■ \operatorname{nnf}(\neg(\varphi \vee \psi)) = (\operatorname{nnf}(\neg\varphi) \wedge \operatorname{nnf}(\neg\psi))

■ \operatorname{nnf}(\neg\neg\varphi) = \operatorname{nnf}(\varphi)
```

Why Logic?

Propositional Logic

-

Semantics

Terminology

Conjunctive normal form

Theorem

For each propositional formula there exist logically equivalent formulae in CNF and DNF, respectively.

Proof.

The claim is true for a, $\neg a$, \top , \bot .

Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its CNF $\operatorname{cnf}(\varphi)$ (and its DNF $\operatorname{dnf}(\varphi)$).

- $= \operatorname{cnf}(\neg \varphi) = \operatorname{nnf}(\neg \operatorname{dnf}(\varphi)) \text{ and } \operatorname{cnf}(\varphi \wedge \psi) = \operatorname{cnf}(\varphi) \wedge \operatorname{cnf}(\psi).$
- Assume $\operatorname{cnf}(\varphi) = \bigwedge_i \chi_i$ and $\operatorname{cnf}(\psi) = \bigwedge_j \rho_j$ with χ_i, ρ_j being clauses. Then $\operatorname{cnf}(\varphi \vee \psi) = \operatorname{cnf}((\bigwedge_i \chi_i) \vee (\bigwedge_i \rho_j)) = \bigwedge_i \bigwedge_j (\chi_i \vee \rho_j)$ (by distributivity)

Similar for $dnf(\varphi)$.

Why Logic?

Propositional Logic

Cymax

Semantics

Terminology

- Why Logic?
- Propositional Logic
- Syntax
- Semantics
- Terminology
- Decision Problems and Resolution
- Resolution Strategies Horn Clauses

- Completeness
- Resolution Strategies
- Horn Clauses

How to decide properties of formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?

Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- A CNF formula is valid iff all clauses contain two complementary literals or T.
- A DNF formula is satisfiable iff one disjunct does not contain ⊥ or two complementary literals.
- However, transformation to CNF or DNF may take exponential time (and space!).
- One can try out all truth assignments.
- One can test systematically for satisfying truth assignments (backtracking) → Davis-Putnam-Logemann-Loveland.

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

Decision Problems and Resolution

Completeness Resolution Strategies

Deciding entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \; \text{iff} \; \bigwedge \Theta \rightarrow \varphi \, \text{is valid}.$$

- Now negate and test for unsatisfiability using DPLL.
- Different approach: Try to derive φ from Θ find a proof of φ from Θ .
- Use inference rules to derive new formulae from Θ . Continue to deduce new formulae until φ can be deduced.
- One particular calculus: resolution.

Why Logic?

Propositional Logic

Cyrnax

Semantics

Terminology

Decision Problems and Resolution

Resolution Strategies

Resolution: representation

- We assume that all formulae are in CNF.
 - Can be generated using the described method.
 - Often formulae are already close to CNF.
 - There is a "cheap" conversion from arbitrary formulae to CNF that preserves satisfiability – which is enough as we will see.
- More convenient representation:
 - CNF formula is represented as a set.
 - Each clause is a set of literals.
- Empty clause (symbolically □) and empty set of clauses (symbolically 0) are different!

Why Logic?

Propositional Logic

- ,

Semantics

Terminology

Decision Problems and Resolution

Resolution Strategies

Resolution: the inference rule

Let I be a literal and \overline{I} its complement.

The resolution rule

$$\frac{C_1 \dot{\cup} \{I\}, C_2 \dot{\cup} \{\bar{I}\}}{C_1 \cup C_2}$$

 $C_1 \cup C_2$ is the resolvent of the parent clauses $C_1 \cup \{l\}$ and $C_2 \cup \{\bar{l}\}$. I and \bar{l} are the resolution literals.

Example: $\{a,b,\neg c\}$ resolves with $\{a,d,c\}$ to $\{a,b,d\}$.

Note: The resolvent is not logically equivalent to the set of parent clauses!

Notation:

$$R(\Delta) = \{C \mid C \text{ is resolvent of two clauses in } \Delta\}$$

Why Logic?

Propositional Logic

Syntax

Semantics

Terminology

Decision Problems and Resolution

Completeness Resolution Strategies

NI REIBURG

Resolution: derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_1, \ldots, C_n of clauses such that

Define
$$\mathbb{R}^*(\Delta) = \{D \mid \Delta \vdash D\}.$$

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.

Proof idea.

Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.

Let $C_1 \cup \{I\}$ and $C_2 \cup \{\overline{I}\}$ be the parent clauses of $D = C_1 \cup C_2$.

Assume $\mathcal{I} \models \Delta$, we have to show $\mathcal{I} \models D$.

Case 1: $\mathcal{I} \models I$ then $\exists m \in C_2$ s.t. $\mathcal{I} \models m$. This implies $\mathcal{I} \models D$.

Case 2: $\mathcal{I} \models \overline{l}$ similarly, $\exists m \in C_1$ s.t. $\mathcal{I} \models m$.

This means that each model \mathcal{I} of Δ also satisfies D, i.e., $\Delta \models D$.

Why Logic?

Propositional Logic

Gerriantics

Terminology

Decision Problems and Resolution

Completeness
Resolution
Strategies
Horn Clauses

Resolution: completeness?

Do we have

$$\Delta \models \varphi \text{ implies } \Delta \vdash \varphi$$
?

Of course, could only hold for CNF.

However:

$$\left\{\{a,b\},\{\neg b,c\}\right\} \models \{a,b,c\} \\ \not\vdash \{a,b,c\}$$

However, one can show that resolution is refutation-complete:

 Δ is unsatisfiable iff $\Delta \vdash \Box$.

Entailment: Reduce to unsatisfiability testing and decide by resolution.

Why Logic?

Propositional Logic

-, ...

Semantics

Terminology

Decision Problems and Resolution

Completeness Resolution

Strategies

Horn Clause

Resolution strategies

- Trying out all different resolutions can be very costly,
- and might not be necessary.
- There are different resolution strategies.
- Examples:
 - Input resolution ($R_I(\cdot)$): In each resolution step, one of the parent clauses must be a clause of the input set.
 - Unit resolution ($R_U(\cdot)$): In each resolution step, one of the parent clauses must be a unit clause.
 - Not all strategies are (refutation) completeness preserving. Neither input nor unit resolution is. However, there are others.

Why Logic?

Propositional Logic

- ,

Semantics

Terminology

Decision
Problems and
Resolution

Resolution Strategies

Horn clauses & resolution

Horn clauses: Clauses with at most one positive literal

Example: $(a \lor \neg b \lor \neg c), (\neg b \lor \neg c)$

Proposition

Unit resolution is refutation-complete for Horn clauses.

Proof idea.

Consider $R_U^*(\Delta)$ of Horn clause set Δ . We have to show that if $\Box \notin R_U^*(\Delta)$, then $\Delta (\equiv R_U^*(\Delta))$ is satisfiable.

- Assign true to all unit clauses in $R_{II}^*(\Delta)$.
- Those clauses that do not contain a literal / such that {/} is one of the unit clauses have at least one negative literal.
- Assign true to these literals.
- Results in satisfying truth assignment for $R_U^*(\Delta)$ (and $\Delta \subseteq R_U^*(\Delta)$).

Why Logic?

Propositional Logic

-,.....

Semantics

Terminology

Decision
Problems and
Resolution

Completeness Resolution Strategies

Horn Clauses

Literature

Harry R. Lewis and Christos H. Papadimitriou.

Elements of the Theory of Computation.

Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 & 9).

Volker Sperschneider and Grigorios Antoniou.

Logic - A Foundation for Computer Science.

Addison-Wesley, Reading, MA, 1991 (Chapters 1-3).

H.-P. Ebbinghaus, J. Flum, and W. Thomas.

Einführung in die mathematische Logik.

Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.

U. Schöning.

Logik für Informatiker.

Spektrum-Verlag, 5th edition, 2000.

Why Logic?

Propositional Logic

Cyntax

Semantics

Terminology

Decision
Problems and

Completeness Resolution Strategies

Horn Clauses

