Principles of Knowledge Representation and Reasoning Introduction & Organization

Bernhard Nebel, Felix Lindner, and Thorsten Engesser April 17, 2018 UNI FREIBURG

Organization

Lecturers Time, Location, Web Page Exercises

Motivation

Lecturers

- Time, Location, Web Page
- Exercises

Lecturers

Prof. Dr. Bernhard Nebel Room 52-00-028

Consultation: Wed 12:00-13:00 and by appointment Phone: 0761/203-8221 email: nebel@informatik.uni-freiburg.de

Dr. Felix Lindner Room 52-00-043

Consultation: by appointment Phone: 0761/203-8251 email: lindner@informatik.uni-freiburg.de

Thorsten Engesser Room 52-00-041

Consultation: by appointment Phone: 0761/203-8228 email: engesser@informatik.uni-freiburg.de

April 17, 2018

Nebel, Lindner, Engesser – KR&R

Organization

Lecturers

Time, Location, Web Page Exercises

Motivation

4/34

Lecturers

Time, Location, Web Page

Motivation

Where

Building 51, Room HS 03-026

When

Tuesday 16:00-17:00, Thursday 14:00-16:00

Web page

http: //gki.informatik.uni-freiburg.de/teaching/ss18/krr/

April 17, 2018

Lecturers Time, Location, Web

Page Exercises

Motivation

Where

Building 51, Room HS 03-026

When

Tuesday 17:00-18:00

- Exercises will be handed out and posted on the web page on Thursday.
- Solutions can be handed in in English and German.
- Students should work in pairs and hand in one solution.
- Larger groups and copied results will not be accepted.
- Previous week's exercises have to be handed in before the Thursday lecture.

Lecturers Time, Location, Web Page

Exercises

Motivation

Lecturers Time, Location, Web Page

Exercises

Motivation

- An oral or written examination takes place in the semester break.
- The examination is obligatory for all Bachelor & Master students.
- Admission to the exam: necessary to have reached at least 50% of the points on exercises and projects.

2 Motivation

s

Knowledge

- Representation
- Reasoning
- Role of formal logic
- Role of Complexity Theory
- Course Outline
- Literature

Organization

Motivation

Course Goals Knowledge Representation Reasoning Role of formal logic Role of Complexity Theory Course Outline Literature

Course prerequisites & goals

Goals

- Acquiring skills in representing knowledge
- Understanding the principles behind different knowledge representation techniques
- Being able to read and understand research literature in the area of KR&R
- Being able to complete a project in this research area

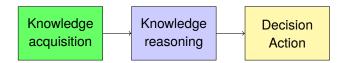
Prerequisites

- Basic knowledge in the area of AI
- Basic knowledge in formal logic
- Basic knowledge in theoretical computer science

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Organization


Motivation

Course Goals

Knowledge Representation Reasoning Role of formal log Role of Complexit Theory Course Outline Literature

- Al can be described as: The study of intelligent behavior achieved through computational means
- Knowledge representation and reasoning could then be viewed as the study of how to reason (compute) with knowledge in order to decide what to do.

Motivation

Course Goals

Knowledge Representation Reasoning Role of formal logi Role of Complexity Theory Course Outline Literature

12/34

- We understand by "knowledge" all kinds of facts about the world.
- It is more than just data: it is data & meaning.
- Knowledge is necessary for intelligent behavior (human beings, robots).
- What is knowledge?
- ... no definition here, instead we consider "representations of knowledge".

Motivation

Course Goals

Knowledge

Representation Reasoning Role of formal logic Role of Complexity Theory

Course Outlin

Literature

... and other mental attitudes

- wanting (!) ...
- having an opinion

- If A represents B, then A stands for B and is usually more easily accessible than B.
- As those are surrogates, imperfection cannot be avoided.
- In our case we are interested in groups of symbols that stand for some proposition.

Knowledge Representation

The field of study concerned with representations of propositions (that are believed by some agent).

Organization

Motivation

Course Goals Knowledge

Representation

Reasoning Role of formal logic Role of Complexity Theory Course Outline Literature

- Reasoning is the use of representations of propositions in order to derive new ones.
- While propositions are abstract objects, their representations are concrete objects and can be easily manipulated.
- Reasoning can be as easy as arithmetics ~> mechanical symbol manipulation.
- For example:
 - raining is true
 - IF raining is true THEN wet street is true
 - wet street is true

Motivation

Course Goals Knowledge Representation

Reasoning

Role of formal logic Role of Complexity Theory Course Outline Literature

Why is Knowledge Representation and Reasoning useful?

- Describing/understanding the behavior of systems in terms of the knowledge it has.
- Generating the behavior of a system!
 - Declarative knowledge can be separated from its possible usages (compare: procedural knowledge).
 - Understanding the behavior of an intelligent system in terms of the represented knowledge makes debugging and understanding much easier.
 - Modifications and extensions are also much easier to perform.

Organization

Motivation

Course Goals Knowledge Representatior

Reasoning

17/34

Role of formal logic Role of Complexity Theory Course Outline Literature

```
printC(snow) :- !, write("It's white").
printC(grass) :- !, write("It's green").
printC(sky) :- !, write("It's yellow").
printC(X) :- !, write("Beats me").
```

```
printC(X) :- color(X,Y), !, write("It's "), write(Y).
printC(X) :- write("Beats me").
color(snow,white).
color(sky,yellow).
color(Sky,yellow).
color(X,Y) :- madeof(X,Z), color(Z,Y).
madeof(grass,vegetation).
color(vegetation,green).
```

Motivation

Course Goals Knowledge Representation Reasoning

Role of formal logic Role of Complexity Theory Course Outline

Why not use the first variant of the Prolog program?

- We can add new tasks and make them depend on previous knowledge.
- We can extend existing behavior by adding new facts.
- We can easily explain and justify the behavior.

Organization

Motivation

Course Goals Knowledge Representatio

Reasoning

Role of formal logic Role of Complexity Theory Course Outline Literature

- Note: there was no explicit statement about the color of grass in the program.
- In general: many facts will be there only implicitly.
- Use concept of entailment/logical implication.

Can/shall we compute all implicit (all entailed) facts?

It may be computationally too expensive.

Organization

Motivation

Course Goals Knowledge Representation

Reasoning

Role of formal logic Role of Complexity Theory Course Outline Literature

- Formal logic is the field of study of entailment relations, formal languages, truth conditions, semantics, and inference.
- All propositions are represented as formulae which have a semantics according to the logic in question.
- Formal logics gives us a framework to discuss different kinds of reasoning.

Motivation

Course Goals Knowledge Representation Reasoning Role of formal logic

Role of Complexit Theory Course Outline Literature

- Usually, we are interested in deriving implicit, entailed facts from a given collection of explicitly represented facts
 - in a logically sound (the derived proposition must be true, given that the premises are true)
 - and complete way (all true consequences can be derived).
- Sometimes, however, we want logically unsound derivations (e.g. reasoning based on assumptions).
- Sometimes, we want to give up completeness (e.g. for efficiency reasons).

Motivation

Course Goals Knowledge Representation Reasoning

Role of formal logic

Role of Complexit Theory Course Outline Literature

22/34

... Model finding and satisfiability

- In planning and configuration tasks, we often get a set of constraints and a goal specification. We then have to find a solution satisfying all the constraints.
 - Either round or square
 - Either red or blue
 - If red and round or if blue and square then wood
 - If blue then metallic
 - If square then not metallic
 - If red then square
 - square

One solution: square, not metallic, red, wood

Does not logically follow, but is one possible assignment (or model).

Organization

Motivation

Course Goals Knowledge Representation Reasoning Role of formal logic

Role of Complexit Theory Course Outline Literature

... Abduction (inference to the best explanation)

- In diagnosis tasks, we often have to find a good explanation for a given observation or symptom.
- Given a background theory, a set of explanations and an observation, find the most likely set of explanations.
 - earthquake implies alarm
 - burglar implies alarm
 - { earthquake, burglar } is the set of abducibles
 - alarm is observed
 - One explanation is earthquake ...
- There can be many possible explanations.
- Not a sound inference.

Organization

Motivation

Course Goals Knowledge Representation Reasoning Role of formal logic

Role of Complexity

Course Outline

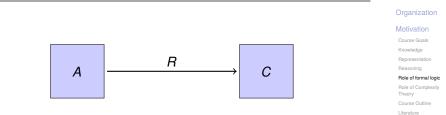
Literature

24 / 34

... Default reasoning (jumping to conclusions)

- Often we do not have enough information, but nevertheless want to reach a conclusion (that is likely to be true).
- In the absence of evidence to the contrary, we jump to a conclusion.
 - Birds are usually able to fly.
 - Tweety is a bird.
 - So, you would expect that Tweety is able to fly.
- Unsound conclusion
- It might be necessary to withdraw conclusions when evidence to the contrary becomes available ~>> nonmonotonic reasoning.

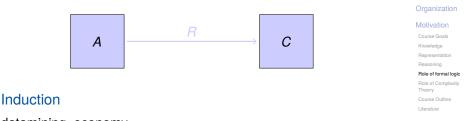
Organization


Motivation

Course Goals Knowledge Representation Reasoning

Role of formal logic

Role of Complexit Theory Course Outline Literature


25 / 34

A reasoning process usually consists in 2 out of 3 parts: antecedant, inference rule and conclusion where the objective is to find the third one.

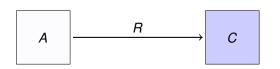
- Conclusion is missing: deduction
- Inference is missing: induction
- Antecedant is missing: abduction

Induction

datamining, economy

Example

Case: These beans are [randomly selected] from this bag. Result: These beans are white. Rule: All the beans from this bag are white.


Example from Charles Sanders Peirce

April 17, 2018

Nebel, Lindner, Engesser - KR&R

Abduction

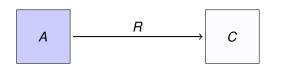
Abduction

medical diagnosis, car repairing, failure explanation

Example

Rule: All the beans from this bag are white. Result: These beans [oddly] are white. Case: These beans are from this bag.

Example from Charles Sanders Peirce


Role of formal logic Role of Complexity

April 17, 2018

Nebel, Lindner, Engesser - KR&R

28/34

Deduction

Organization

Motivation

Course Goals Knowledge Representation Reasoning Role of formal logic Role of Complexity

Deduction

mathematics

Example

Rule: All the beans from this bag are white. Case: These beans are from this bag. Result: These beans are white.

Example from Charles Sanders Peirce

April 17, 2018

Nebel, Lindner, Engesser – KR&R

- Intelligent behavior is based on a vast amount of knowledge.
- Because of the huge amount of knowledge we have represented, reasoning should be easy in the complexity theory sense.
- Reasoning should scale well: we need efficient reasoning algorithms.

Motivation

Knowledge Representation Reasoning Role of formal logic Role of Complexity Theory Course Outline

Use complexity theory and recursion theory to

- determine the complexity of reasoning problems,
- compare and classify different approaches based on complexity results,
- identify easy (polynomial-time) special cases,
- use heuristics/approximations for provably hard problems, and
- choose among different approaches.

Organization

Motivation

Knowledge Representation Reasoning Role of formal logic Role of Complexity Theory Course Outline

Course outline

1	Introduction
2	Reminder: Classical Logic
3	A New Logic: Boxes and Diamonds
4	Description Logics
5	Nonmonotonic Logics : Default logic and ASP
6	Cumulative logics
7	Belief change
8	Qualitative Spatial and Temporal Reasoning

Motivation

Representation Reasoning Role of Complexity

Course Outline

Literature

Literature I

R. J. Brachman and Hector J. Levesque, Knowledge Representation and Reasoning, Morgan Kaufman, 2004.
C. Beierle and G. Kern-Isberner, Methoden wissensbasierter Systeme, Vieweg, 2000.
G. Brewka, ed., Principles of Knowledge Representation, CSLI Publications, 1996.
G. Lakemeyer and B. Nebel (eds.), Foundations of Knowledge Representation and Reasoning, Springer-Verlag, 1994
W. Bibel, Wissensrepräsentation und Inferenz, Vieweg, 1993

Organization

Motivation

Course Goals Knowledge Representation Reasoning Role of formal logic Role of Complexity Theory Course Outline

Literature

UNI FREIBURG

Literature II

R. J. Brachman and Hector J. Levesque (eds.), Readings in Knowledge Representation, Morgan Kaufmann, 1985.

B. Nebel,

Logics for Knowledge Representation,

in: N. J. Smelser and P. B. Baltes (eds.), International Encyclopedia of the Social and Behavioral Sciences, Kluwer, Dordrecht, 2001.

B. Nebel,

Artificial Intelligence: A Computational Perspective,

in: G. Brewka, ed., **Principles of Knowledge Representation, Studies in Logic, Language and Information**, CSLI Publications, 1996, 237-266.

Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning,

(1989, 1991, 1992, ..., 2016, 2018), Morgan Kaufmann Publishers.

Organization

Motivation

Course Goals Knowledge Representation Reasoning Role of formal logi Role of Complexity Theory Course Outline Literature