Principles of Knowledge Representation and Reasoning
Introduction & Organization

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
April 17, 2018
1 Organization

- Lecturers
- Time, Location, Web Page
- Exercises
Lecturers

Prof. Dr. Bernhard Nebel Room 52-00-028

Consultation: Wed 12:00-13:00 and by appointment
Phone: 0761/203-8221
email: nebel@informatik.uni-freiburg.de

Dr. Felix Lindner Room 52-00-043

Consultation: by appointment
Phone: 0761/203-8251
email: lindner@informatik.uni-freiburg.de

Thorsten Engesser Room 52-00-041

Consultation: by appointment
Phone: 0761/203-8228
email: engesser@informatik.uni-freiburg.de
Lectures

Where

Building 51, Room HS 03-026

When

Tuesday 16:00-17:00, Thursday 14:00-16:00

Web page

http://gki.informatik.uni-freiburg.de/teaching/ss18/krr/
Exercises

Where
Building 51, Room HS 03-026

When
Tuesday 17:00-18:00
Exercises II

- Exercises will be handed out and posted on the web page on Thursday.
- Solutions can be handed in in English and German.
- Students should work in pairs and hand in one solution.
- Larger groups and copied results will not be accepted.
- Previous week’s exercises have to be handed in before the Thursday lecture.
Examination

- An oral or written examination takes place in the semester break.
- The examination is obligatory for all Bachelor & Master students.
- Admission to the exam: necessary to have reached at least 50% of the points on exercises and projects.
2 Motivation

- Course Goals
- Knowledge
- Representation
- Reasoning
- Role of formal logic
- Role of Complexity Theory
- Course Outline
- Literature
Course prerequisites & goals

Goals

- Acquiring skills in representing knowledge
- Understanding the principles behind different knowledge representation techniques
- Being able to read and understand research literature in the area of KR&R
- Being able to complete a project in this research area

Prerequisites

- Basic knowledge in the area of AI
- Basic knowledge in formal logic
- Basic knowledge in theoretical computer science
AI can be described as: The study of intelligent behavior achieved through computational means.

Knowledge representation and reasoning could then be viewed as the study of how to reason (compute) with knowledge in order to decide what to do.
Knowledge

- We understand by “knowledge” all kinds of facts about the world.
- It is more than just data: it is data & meaning.
- Knowledge is necessary for intelligent behavior (human beings, robots).
- What is knowledge?
- ... no definition here, instead we consider “representations of knowledge”.

April 17, 2018 Nebel, Lindner, Engesser – KR&R
...and other mental attitudes

- believing ...
- suspecting …
- wanting (!) …
- having an opinion
Representation

- If A represents B, then A stands for B and is usually more easily accessible than B.
- As those are surrogates, imperfection cannot be avoided.
- In our case we are interested in groups of symbols that stand for some proposition.

Knowledge Representation

The field of study concerned with representations of propositions (that are believed by some agent).
Reasoning

- **Reasoning** is the use of representations of propositions in order to derive new ones.

- While propositions are abstract objects, their representations are concrete objects and can be easily manipulated.

- Reasoning can be as easy as arithmetics \Rightarrow mechanical symbol manipulation.

- For example:
 - raining is true
 - IF raining is true THEN wet street is true
 - wet street is true
Why is Knowledge Representation and Reasoning useful?

- **Describing/understanding** the behavior of systems in terms of the knowledge it has.
- **Generating** the behavior of a system!
 - Declarative knowledge can be separated from its possible usages (compare: procedural knowledge).
 - Understanding the behavior of an intelligent system in terms of the represented knowledge makes debugging and understanding much easier.
 - Modifications and extensions are also much easier to perform.
Knowledge-based systems: An example

```prolog
printC(snow) :- !, write("It’s white").
printC(grass) :- !, write("It’s green").
printC(sky) :- !, write("It’s yellow").
printC(X) :- !, write("Beats me").

printC(X) :- color(X,Y), !, write("It’s "), write(Y).
printC(X) :- write("Beats me").
color(snow,white).
color(sky,yellow).
color(X,Y) :- madeof(X,Z), color(Z,Y).
madeof(grass,vegetation).
color(vegetation,green).
```
Advantages of knowledge-based systems

Why not use the first variant of the Prolog program?

- We can add new tasks and make them depend on previous knowledge.
- We can extend existing behavior by adding new facts.
- We can easily explain and justify the behavior.
Why reasoning?

- Note: there was no explicit statement about the color of grass in the program.
- In general: many facts will be there only implicitly.
- Use concept of entailment/logical implication.

Can/shall we compute all implicit (all entailed) facts?

- It may be computationally too expensive.
The role of formal logic

- Formal logic is the field of study of entailment relations, formal languages, truth conditions, semantics, and inference.
- All propositions are represented as formulae which have a semantics according to the logic in question.
- Formal logics gives us a framework to discuss different kinds of reasoning.
Different kinds of reasoning

- Usually, we are interested in deriving implicit, entailed facts from a given collection of explicitly represented facts:
 - in a logically sound (the derived proposition must be true, given that the premises are true)
 - and complete way (all true consequences can be derived).
- Sometimes, however, we want logically unsound derivations (e.g. reasoning based on assumptions).
- Sometimes, we want to give up completeness (e.g. for efficiency reasons).
...Model finding and satisfiability

In planning and configuration tasks, we often get a set of constraints and a goal specification. We then have to find a solution satisfying all the constraints.

- Either round or square
- Either red or blue
- If red and round or if blue and square then wood
- If blue then metallic
- If square then not metallic
- If red then square
- square

One solution: square, not metallic, red, wood

Does not logically follow, but is one possible assignment (or model).
Abduction (inference to the best explanation)

- In **diagnosis** tasks, we often have to find a good **explanation** for a given **observation** or **symptom**.
- Given a **background theory**, a set of **explanations** and an **observation**, find the **most likely set of explanations**.
 - earthquake implies alarm
 - burglar implies alarm
 - \{ earthquake, burglar \} is the set of abducibles
 - alarm is observed
 - One explanation is earthquake ...

- There can be many possible explanations.
- Not a sound inference.
Default reasoning (jumping to conclusions)

- Often we do not have enough information, but nevertheless want to reach a conclusion (that is likely to be true).
- In the absence of evidence to the contrary, we **jump to a conclusion**.
 - Birds are usually able to fly.
 - Tweety is a bird.
 - So, you would expect that Tweety is able to fly.
- Unsound conclusion
- It might be necessary to withdraw conclusions when evidence to the contrary becomes available \(\Rightarrow \) nonmonotonic reasoning.
A reasoning process usually consists in 2 out of 3 parts: antecedent, inference rule and conclusion where the objective is to find the third one.

- Conclusion is missing: deduction
- Inference is missing: induction
- Antecedant is missing: abduction
Deduction / abduction / induction

Induction

datamining, economy

Example

Case: These beans are [randomly selected] from this bag.
Result: These beans are white.
Rule: All the beans from this bag are white.

Example from Charles Sanders Peirce
Abduction

medical diagnosis, car repairing, failure explanation

Example

Rule: All the beans from this bag are white.
Result: These beans [oddly] are white.
Case: These beans are from this bag.

Example from Charles Sanders Peirce
Deduction / abduction / induction

Deduction

mathematics

Example

Rule: All the beans from this bag are white.
Case: These beans are from this bag.
Result: These beans are white.

Example from Charles Sanders Peirce
The role of complexity theory (1)

- Intelligent behavior is based on a vast amount of knowledge.
- Because of the huge amount of knowledge we have represented, reasoning should be easy in the complexity theory sense.
- Reasoning should scale well: we need efficient reasoning algorithms.
Use **complexity theory** and **recursion theory** to

- determine the complexity of reasoning problems,
- compare and classify different approaches based on complexity results,
- identify easy (polynomial-time) special cases,
- use heuristics/approximations for provably hard problems, and
- choose among different approaches.
Course outline

1. Introduction
2. Reminder: Classical Logic
3. A New Logic: Boxes and Diamonds
4. Description Logics
5. Nonmonotonic Logics: Default logic and ASP
6. Cumulative logics
7. Belief change
8. Qualitative Spatial and Temporal Reasoning
Literature I

