Principles of Knowledge Representation and Reasoning

B. Nebel, F. Lindner, T. Engesser

Summer Semester 2018

University of Freiburg
Department of Computer Science

Exercise Sheet 8

Due: June 21th, 2018

Exercise 8.1 (Expressibility and Complexity, $3+3$)

(a) You are asked to show that concept constructors are not just syntactic sugar. In particular, if one adds the functionality concept constructor - $(\leq 1 r)-$ to $\mathcal{A L C}$ one gets the language $\mathcal{A L C F}$. Show that $\mathcal{A L C \mathcal { F }}$ is indeed more expressive than $\mathcal{A L C}$ by proving that the concept $(\leq 1 r)$ cannot be expressed in $\mathcal{A L C}$.
Hint: Assume an $\mathcal{A L C}$ concept C being equivalent to $(\leq 1 r)$. Provide an interpretation \mathcal{I} which satisfies both C and $(\leq 1 r)$. Then construct another interpretation \mathcal{I}^{\prime} from \mathcal{I} as follows: $\left.\Delta^{\mathcal{I}^{\prime}}=\Delta^{\mathcal{I}} \times \mathbb{N}, A^{\mathcal{I}^{\prime}}=\left\{(d, i) \mid d \in A^{\mathcal{I}}, i \in \mathbb{N}\right)\right\}, r^{\mathcal{I}^{\prime}}=\left\{\left(<d, i>,<e, j>\mid(d, e) \in r^{\mathcal{I}}, i, j \in \mathbb{N}\right)\right)$ and show that \mathcal{I}^{\prime} is a model for C but not for $(\leq 1 r)$.
(b) Given the TBox \mathcal{T}, determine the description logic used to describe the concepts. What is the complexity class of the satisfiability problem of this logic? Propose how \mathcal{T} could be expressed in a less complex DL.

- $\mathcal{T}=\{A \doteq \exists r .(\forall s . C \sqcup \exists s . \neg C), B \doteq(\geq 1 s), C \doteq B \sqcap \forall r . \neg(\neg A \sqcup \neg B)$

Exercise 8.2 (Nonmonotonic Reasoning using Abnormality Predicates, 3)

Consider the following knowledge base KB and show that $K B \models_{\leq}$flies $(c) \vee$ flies (d). Note: The special version of entailment (which is called minimal entailment and which is denoted by \models_{\leq}) is defined as follows: $K B \models \leq \phi$ holds iff for every interpretation \mathcal{I} such that $\mathcal{I} \models K B$, either $\mathcal{I} \models \phi$ or there is an \mathcal{I}^{\prime} such that $\mathcal{I}^{\prime}<\mathcal{I}$ and $\mathcal{I}^{\prime} \models K B$ (with $\mathcal{I}^{\prime} \leq \mathcal{I}$ iff Abnormal ${ }^{\mathcal{I}^{\prime}} \subseteq$ Abnormal $^{\mathcal{I}}$). Discuss how this kind of reasoning compares to reasoning under the Closed World Assumption.

$$
K B=\{\forall x(\operatorname{Bird}(x) \wedge \neg \operatorname{Abnormal}(x) \rightarrow \text { flies }(x)), \operatorname{Bird}(c), \operatorname{Bird}(d), \neg \text { flies }(c) \vee \neg \text { flies }(d)\}
$$

Exercise 8.3 (Extensions in Default Logic, 3)
Consider the propositional default theory $\Delta=\langle D, W\rangle$ with

$$
D=\left\{\frac{\top: m}{m}, \frac{\top: i}{i}, \frac{m: \neg s}{\neg s}, \frac{m: b}{b}, \frac{i: s \wedge \neg b}{s \wedge \neg b}\right\}, W=\{\neg(m \wedge i)\}
$$

Determine all extensions of Δ. Which of the propositions $s, b, s \vee b, s \wedge b$ are entailed by Δ using credulous reasoning? Which of them are entailed using skeptical reasoning?

