Principles of Knowledge Representation and Reasoning

B. Nebel, F. Lindner, T. Engesser Summer Semester 2018 University of Freiburg Department of Computer Science

Exercise Sheet 8 Due: June 21th, 2018

Exercise 8.1 (Expressibility and Complexity, 3+3)

- (a) You are asked to show that concept constructors are not just syntactic sugar. In particular, if one adds the functionality concept constructor $-(\leq 1r)$ to \mathcal{ALC} one gets the language \mathcal{ALCF} . Show that \mathcal{ALCF} is indeed more expressive than \mathcal{ALC} by proving that the concept $(\leq 1r)$ cannot be expressed in \mathcal{ALC} .

 Hint: Assume an \mathcal{ALC} concept C being equivalent to $(\leq 1r)$. Provide an interpretation \mathcal{I}
 - Hint: Assume an \mathcal{ALC} concept C being equivalent to $(\leq 1r)$. Provide an interpretation \mathcal{I} which satisfies both C and $(\leq 1r)$. Then construct another interpretation \mathcal{I}' from \mathcal{I} as follows: $\Delta^{\mathcal{I}'} = \Delta^{\mathcal{I}} \times \mathbb{N}, A^{\mathcal{I}'} = \{(d,i)|d \in A^{\mathcal{I}}, i \in \mathbb{N})\}, r^{\mathcal{I}'} = \{(d,i), d,e) \in r^{\mathcal{I}}, i,j \in \mathbb{N}\}$ and show that \mathcal{I}' is a model for C but not for $(\leq 1r)$.
- (b) Given the TBox \mathcal{T} , determine the description logic used to describe the concepts. What is the complexity class of the satisfiability problem of this logic? Propose how \mathcal{T} could be expressed in a less complex DL.

•
$$\mathcal{T} = \{ A \doteq \exists r. (\forall s. C \sqcup \exists s. \neg C), B \doteq (\geq 1s), C \doteq B \sqcap \forall r. \neg (\neg A \sqcup \neg B) \}$$

Exercise 8.2 (Nonmonotonic Reasoning using Abnormality Predicates, 3)

Consider the following knowledge base KB and show that $KB \models_{\leq} flies(c) \lor flies(d)$. Note: The special version of entailment (which is called minimal entailment and which is denoted by \models_{\leq}) is defined as follows: $KB \models_{\leq} \phi$ holds iff for every interpretation \mathcal{I} such that $\mathcal{I} \models KB$, either $\mathcal{I} \models \phi$ or there is an \mathcal{I}' such that $\mathcal{I}' < \mathcal{I}$ and $\mathcal{I}' \models KB$ (with $\mathcal{I}' \leq \mathcal{I}$ iff $Abnormal^{\mathcal{I}'} \subseteq Abnormal^{\mathcal{I}}$). Discuss how this kind of reasoning compares to reasoning under the Closed World Assumption.

$$KB = \{ \forall x (Bird(x) \land \neg Abnormal(x) \rightarrow flies(x)), Bird(c), Bird(d), \neg flies(c) \lor \neg flies(d) \}$$

Exercise 8.3 (EXTENSIONS IN DEFAULT LOGIC, 3)

Consider the propositional default theory $\Delta = \langle D, W \rangle$ with

$$D = \{\frac{\top : m}{m}, \frac{\top : i}{i}, \frac{m : \neg s}{\neg s}, \frac{m : b}{b}, \frac{i : s \wedge \neg b}{s \wedge \neg b}\}, W = \{\neg (m \wedge i)\}$$

Determine all extensions of Δ . Which of the propositions $s, b, s \lor b, s \land b$ are entailed by Δ using credulous reasoning? Which of them are entailed using skeptical reasoning?