Principles of Knowledge Representation and Reasoning

B. Nebel, F. Lindner, T. Engesser

Summer Semester 2018

University of Freiburg
Department of Computer Science

Exercise Sheet 1

Due: April 26th, 2018
Exercise 1.1 (Propositional Logic, 2+2+2)
(a) Is the infinite set of clauses

$$
S=\left\{\neg A_{1} \vee \neg A_{2}, A_{2} \vee \neg A_{3}, A_{3} \vee \neg A_{4}, A_{4} \vee \neg A_{5}, \ldots\right\}
$$

satisfiable?
(b) Show that $(C \wedge(D \vee \neg C)) \vee(A \wedge \neg(B \vee A))$ is logically equivalent to $(C \wedge D)$ by applying the equivalences from the lecture.
(c) Prove that there is no polynomial algorithm that transforms an arbitrary propositional logic formula into a logically equivalent formula in CNF.

Hint: Find a family of formulae in DNF with n variables such that every equivalent formula in CNF must consist of an exponential number of clauses.

Exercise 1.2 (Resolution, $3+3$)
(a) Use resolution to show that

$$
F=(\neg A \wedge B \wedge C) \vee(A \wedge B) \vee(\neg A \wedge \neg C) \vee \neg B
$$

is a tautology (valid).
(b) Use resolution to show that

$$
\{B \wedge \neg C,(A \wedge B) \rightarrow(C \vee \neg A)\} \models \neg A
$$

