Principles of Knowledge Representation and Reasoning

B. Nebel, F. Lindner, T. Engesser Summer Semester 2018 University of Freiburg Department of Computer Science

Exercise Sheet 1 Due: April 26th, 2018

Exercise 1.1 (Propositional Logic, 2+2+2)

(a) Is the infinite set of clauses

$$S = \{ \neg A_1 \lor \neg A_2, A_2 \lor \neg A_3, A_3 \lor \neg A_4, A_4 \lor \neg A_5, \dots \}$$

satisfiable?

- (b) Show that $(C \land (D \lor \neg C)) \lor (A \land \neg (B \lor A))$ is logically equivalent to $(C \land D)$ by applying the equivalences from the lecture.
- (c) Prove that there is no polynomial algorithm that transforms an arbitrary propositional logic formula into a logically equivalent formula in CNF.

 $\mathit{Hint:}$ Find a family of formulae in DNF with n variables such that $\mathit{ev-ery}$ equivalent formula in CNF must consist of an exponential number of clauses.

Exercise 1.2 (Resolution, 3+3)

(a) Use resolution to show that

$$F = (\neg A \land B \land C) \lor (A \land B) \lor (\neg A \land \neg C) \lor \neg B$$

is a tautology (valid).

(b) Use resolution to show that

$$\{B \land \neg C, (A \land B) \to (C \lor \neg A)\} \models \neg A$$