Game Theory

14. Combinatorial Auctions

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller July 9th, 2018

Combinatorial Auctions

Combinatorial Auctions

Single-Minded Bidders

Summary

Motivation:

- Multiple items are auctioned concurrently.
- Bidders have preferences for combinations (bundles) of items.
- Items can complement or substitute one another.
 - **complement**: left and right shoe together.
 - substitute: two right shoes.
- Aim: socially optimal allocation of items to bidders.

1 Combinatorial Auctions

Combinatorial Auctions

> Single-Minded Bidders

Summary

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

3 / 49

Combinatorial Auctions

Applications:

- Spectrum auctions (with combinations of spectrum bands and geographical areas)
- Procurement of transportation services for multiple routes
- ...

Notation:

- Items: $G = \{1, ..., m\}$
- Bidders: $N = \{1, ..., n\}$

Combinatorial
Auctions

Single-Minded Bidders

Summary

Combinatorial Auctions

UNI FREIBURG

Combina

Single-

Minded

Ridders

Definition (valuation)

A valuation is a function $v: 2^G \to \mathbb{R}^+$ with $v(\emptyset) = 0$ and $v(S) \le v(T)$ for $S \subseteq T \subseteq G$.

- Requirement $v(\emptyset) = 0$ to "normalize" valuations.
- Requirement $v(S) \le v(T)$ for $S \subseteq T \subseteq G$: monotonicity (or "free disposal").

Let $S, T \subseteq G$ be disjoint.

- *S* and *T* are complements to each other if $v(S \cup T) > v(S) + v(T)$.
- S and T are substitutes if $v(S \cup T) < v(S) + v(T)$.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

6 / 49

Allocations

Combinatorial Auctions

Single-Minded Bidders

ımmary

Definition (allocation)

An allocation of the items to the bidders is a tuple $\langle S_1, \dots, S_n \rangle$ with $S_i \subseteq G$ for $i = 1, \dots, n$ and $S_i \cap S_i = \emptyset$ for $i \neq j$.

The social welfare obtained by an allocation is $\sum_{i=1}^{n} v_i(S_i)$ if v_1, \ldots, v_n are the valuations of the bidders.

An allocation is called socially efficient if it maximizes social welfare among all allocations.

Let A be the set of all allocations.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

7 / 49

Winner Determination Problem

8 / 49

Combina torial

Auctions

Single-

Minded

Bidders

Definition (winner determination problem)

Let $v_i: 2^G \to \mathbb{R}^+$, i = 1, ..., n, be the declared valuations of the bidders. The winner determination problem (WDP) is the problem of finding a socially efficient allocation $a \in A$ for these valuations.

Aim: Develop mechanism for WDP.

Challenges:

- Incentive compatibility
- Complexity of representation and communication of preferences (exponentially many subsets of items!)
- Computational complexity

2 Single-Minded Bidders

10 / 49

- Definitions
- Complexity
- Greedy Mechanism for Single-Minded Bidders
- Properties of Greedy Mechanism

Combination torial Auction

Single-Minded Bidders

Definitions

Greedy Mechanism for Single-Minded Bidders

0

Special Case: Single-Minded Bidders

Auctions Minded

torial

Greedy Mechan

Motivation:

- Focus on single-minded bidders: cuts complexity of representation down to polynomial space.
- Idea: single-minded bidder focuses on one bundle, has fixed valuation v^* for that bundle (and its supersets), valuation 0 for all other bundles.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

11 / 49

Allocation Problem for Single-Minded **Bidders**

13 / 49

Definition (allocation problem for single-minded bidders)

The allocation problem for single-minded bidders (APSMB) is defined by the following input and output.

- INPUT. Bids $\langle S_i^*, v_i^* \rangle$ for i = 1, ..., n
- OUTPUT. $W \subseteq \{1, ..., n\}$ with $S_i^* \cap S_i^* = \emptyset$ for $i, j \in W$, $i \neq j$ such that $\sum_{i \in W} v_i^*$ is maximized.

Claim: APSMB is NP-complete.

torial Auctions

Single-Minded

Definitions

Greedy Mechan

Greedy Mechan

Single-Minded Bidders

torial

Single-Minded

Auctions

Summary

Definition (single-minded bidder)

A valuation v is called single-minded if there is a bundle $S^* \subseteq G$ and a value $v^* \in \mathbb{R}^+$ such that

$$v(S) = \begin{cases} v^* & \text{if } S^* \subseteq S \\ 0 & \text{otherwise} \end{cases}$$

A single-minded bid is a pair $\langle S^*, v^* \rangle$.

- Representational complexity: solved.
- Computational complexity: not solved.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

12 / 49

Allocation Problem for Single-Minded **Bidders**

Since APSMB is an optimization problem, consider the corresponding decision problem:

Definition (allocation problem for single-minded bidders, decision problem)

The decision problem version of APSMB (APSMB-D) is defined by the following input and output.

- INPUT. Bids $\langle S_i^*, v_i^* \rangle$ for i = 1, ..., n and $k \in \mathbb{N}$
- **OUTPUT.** Is there a $W \subseteq \{1, ..., n\}$ with $S_i^* \cap S_i^* = \emptyset$ for $i, j \in W, i \neq j$ such that $\sum_{i \in W} v_i^* \geq k$?

Theorem

APSMB-D is NP-complete.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

torial

Minded

Greedy Mecha

Summary

APSMB-D is NP-complete

UNI FREIBURG

torial

Auctions

Single-

Minded

Proof

NP-hardness: reduction from Independent-Set.

INDEPENDENT-SET instance:

- undirected graph $\langle V, E \rangle$ and $k_{lS} \in \mathbb{N}$.
- \blacksquare Question: Is there an independent set of size k_{IS} in $\langle V, E \rangle$?

Corresponding APSMB-D instance:

- \blacksquare $k = k_{IS}$, items G = E, bidders N = V, and
- for each bidder $i \in V$ the bid $\langle S_i^*, v_i^* \rangle$ with $S_i^* = \{e \in E \mid i \in e\} \text{ and } v_i^* = 1.$
- **Question**: Is there an allocation with social welfare > k?
- (Intuitively: Vertices bid for their incident edges.)

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

15 / 49

APSMB-D is NP-complete

torial Auctions

Single-Minded

Summary

Proof (ctd.)

Since $S_i^* \cap S_i^* = \emptyset$ for $i, j \in W$, $i \neq j$, the set of winners Wrepresents an independent set of cardinality

$$|W| = \sum_{i \in W} v_i^*.$$

Therefore, there is an independent set of cardinality at least k_{iS} iff there is a set of winners W with $\sum_{i \in W} v_i^* \ge k$. This proves NP-hardness.

 $APSMB-D \in NP$: obvious (guess and verify set of winners).

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

16 / 49

APSMB-D is NP-complete

torial Auctions

Minded Bidders

Consequences:

- Solving APSMB optimally: too costly.
- Alternatives:
 - approximation algorithm
 - heuristic approach
 - special cases
- Here: approximation algorithm

Approximation Algorithms

Definition (approximation factor)

Let $c \ge 1$. An allocation $\langle S_1, \dots, S_n \rangle$ is a *c*-approximation of an optimal allocation if

$$\sum_{i=1}^n v_i(T_i) \leq c \cdot \sum_{i=1}^n v_i(S_i)$$

for an optimal allocation $\langle T_1, \dots, T_n \rangle$.

Proposition

July 9th, 2018

Approximating APSMB within a factor of $c \le m^{1/2-\varepsilon}$ for any ε > 0 is NP-hard.

Greedy Mechanis for Single-Mindeo

torial

Single-

Minded

Auctions

Approximation Algorithms

torial

Auctions

Single-Minded

Complexity Greedy Mechanis

for Single-Minded

Best we can still hope for in case of single-minded bidders:

- incentive compatible
- $m^{1/2}$ -approximation algorithm
- with polynomial runtime.

Good news:

Such an algorithm exists!

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

19 / 49

Mechanism for Single-Minded Bidders

UNI FREIBURG

Definition (mechanism for single-minded bidders)

Let V_{sm} be the set of all single-minded bids and A the set of all allocations.

A mechanism for single-minded bidders is a tuple $\langle f, p_1, \dots, p_n \rangle$ consisting of

- a social choice function $f: V_{sm}^n \to A$ and
- **payment functions** $p_i: V_{sm}^n \to \mathbb{R}$ for all i = 1, ..., n.

torial Auctions

> Single-Minded Bidders

Definitions

Greedy Mechanis for Single-Minded Bidders

Summary

July 9th, 2018

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

20 / 49

Mechanism for Single-Minded Bidders

torial

Auctions

Single-

Minded

Bidders

Bidders

Greedy Mechanis for Single-Minded

Definition (efficient computability)

A mechanism for single-minded bidders is efficiently computable if f and all p_i can be computed in polynomial time.

Definition (incentive compatibility)

A mechanism for single-minded bidders is incentive compatible if

$$v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v_i', v_{-i})) - p_i(v_i', v_{-i})$$

for all i = 1, ..., n and all $v_1, ..., v_n, v_i' \in V_{sm}$, where $v_i(a) = v_i^*$ if iwins in a (gets the desired bundle), and $v_i(a) = 0$, otherwise.

Mechanism for Single-Minded Bidders

How to build such a mechanism?

- In principle: could use a VCG mechanism.
- Problem with VCG: incentive compatible, but not efficiently computable (need to compute social welfare, which is NP-hard)
- Alternative idea: VCG-like mechanism that approximates social welfare
- Problem with alternative: efficiently computable, but not incentive compatible
- Solution: forget VCG, use specific mechanism for single-minded bidders.

torial

Single-Minded

Greedy Mechanis for Single-Mindeo Bidders

Greedy Mechanism for Single-Minded **Bidders**

torial

Auctions

Single-

Minded

Bidders

Definitions Complexity

Greedy Mechanis

for Single-Minded

Definition (greedy mechanism for single-minded bidders)

The greedy mechanism for single-minded bidders (GMSMB) is defined as follows.

Let the bidders $1, \ldots, n$ be ordered such that

$$\frac{v_1^*}{\sqrt{|S_1^*|}} \ge \frac{v_2^*}{\sqrt{|S_2^*|}} \ge \dots \ge \frac{v_n^*}{\sqrt{|S_n^*|}}.$$

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

23 / 49

Greedy Mechanism for Single-Minded **Bidders**

torial Auctions

Single-Minded

Greedy Mechanis for Single-Mindeo

Summary

Definition (greedy mechanism for single-minded bidders, ctd.)

Let the set $W \subseteq \{1, ..., n\}$ be procedurally defined by the following pseudocode:

$$\begin{aligned} \mathcal{W} &\leftarrow \emptyset \\ \text{for } i = 1, \dots, n \text{ do} \\ &\quad \text{if } S_i^* \cap \left(\bigcup_{j \in \mathcal{W}} S_j^* \right) = \emptyset \text{ then} \\ &\quad \mathcal{W} \leftarrow \mathcal{W} \cup \{i\} \\ &\quad \text{end if} \\ &\quad \text{end for} \end{aligned}$$

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

24 / 49

Greedy Mechanism for Single-Minded **Bidders**

torial

Auctions

Single-Minded

Bidders Definitions

Bidders

Greedy Mechanis

for Single-Minded

Greedy Mechai

Definition (greedy mechanism for single-minded bidders, ctd.)

Result: allocation a where exactly the bidders in W win.

Payments:

■ Case 1: If $i \in W$ and there is a smallest index j such that $S_i^* \cap S_i^* \neq \emptyset$ and for all $k < j, k \neq i, S_k^* \cap S_i^* = \emptyset$, then

$$p_i(v_1,...,v_n) = \frac{v_j^*}{\sqrt{|S_j^*|/|S_i^*|}},$$

Case 2: Otherwise.

$$o_i(v_1,\ldots,v_n)=0.$$

$p_i(v_1,\ldots,v_n)=0.$

Greedy Mechanism for Single-Minded **Bidders**

UNI FREIBURG

26 / 49

Example

Let $N = \{1, 2, 3, 4\}$ and $G = \{1, ..., 13\}$.

i	Package \mathcal{S}_i^*	Val. v_i^*	$v_i^*/\sqrt{ S_i^* }$	Assignm. order
1	{1,2,3,4,5,6,7,8,9}	15		
2	{3,4,5,6,7,8,9,12,13}	3		
3	{1,2,10,11}	12		
4	{10,11,12,13}	8		

Positions in assignment order? Winner set? Assignment? Social welfare of winner set?

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

Greedy Mech Summary

Bidders

Greedy Mechanis

for Single-Mindeo

torial

Auctions

Minded

Greedy Mechanism for Single-Minded **Bidders**

UNI FREIBURG

torial

Auctions

Single-

Minded

Bidders Definitions

Complexity

Bidders

Greedy Mechanis

for Single-Minded

Greedy Mechai

Summary

Example (ctd.)

Assignments:

- Bidder 3 gets {1,2,10,11}.
- 2 Bidder 1 gets nothing (obj. 1 and 2 already assigned).
- Bidder 4 gets nothing (obj. 10 and 11 already assigned).
- Bidder 2 gets the remainder, i.e., {3,4,5,6,7,8,9,12,13}.

Payments:

Bidder 3 pays

$$\frac{v_1^*}{\sqrt{|S_1^*|/|S_3^*|}} = \frac{15}{\sqrt{9/4}} = \frac{15}{3/2} = 10.$$

Bidders 1, 4 and 2 pay 0.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

27 / 49

Greedy Mechanism for Single-Minded **Bidders**

UNI FREIBURG

torial Auctions

Single-Minded

Greedy Mechanis for Single-Mindeo Bidders

Summary

Example (ctd.)

Therefore:

■ Winner set: $W = \{2,3\}$. Social welfare: U = 12 + 3 = 15.

Optimal winner set: $W^* = \{1,4\}$.

Optimal social welfare: $U^* = 15 + 8 = 23$.

Approximation ratio: $23/15 < 2 < 3 < \sqrt{13} = \sqrt{m}$

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

28 / 49

Greedy Mechanism for Single-Minded Bidders: Efficient Computability

UNI FREIBURG

Minded Bidders

Theorem GMSMB is efficiently computable.

Open questions:

- What about incentive compatibility?
- What about approximation factor of \sqrt{m} ?

torial Auctions

Definitions Complexity

Greedy Mechani for Single-Minde

Greedy Mechani

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

■ Step 1: Show that GMSMB is monotone.

■ Step 2: Show that GMSMB uses critical payments.

■ Step 4: Show that every mechanism for single-minded

where losers pay nothing is incentive compatible.

bidders that is monotone, that uses critical payments, and

■ Step 3: Show that in GMSMB losers pay nothing.

To prove incentive compatibility:

30 / 49

torial Auctions

Single-Minded

Greedy Mecha

Greedy Mechan

Summary

29 / 49

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

UNI FREIBURG

torial

Single-

Minded

Bidders

Definitions

Complexity

Greedy Mechai

Definition (monotonicity)

A mechanism for single-minded bidders is monotone if a bidder who wins with bid $\langle S^*, v^* \rangle$ would also win with any bid $\langle S', v' \rangle$ where $S' \subseteq S^*$ and $v' \ge v^*$ (for fixed bids of the other bidders).

Definition (critical payments)

A mechanism for single-minded bidders uses critical payments if a bidder who wins pays the minimal amount necessary for winning, i.e., the infimum of all v' such that $\langle S^*, v' \rangle$ still wins.

B. Nebel, R. Mattmüller - Game Theory

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

UNI FREIBURG

torial Auctions

Single-

Minded

Lemma

GMSBM is monotone, uses critical payments, and losers pay nothing.

Proof

Monotonicity: Increasing v_i^* or decreasing S_i^* can only move bidder *i* up in the greedy order, making it easier to win.

Critical payments: Bidder i wins as long as he is before bidder *j* in the greedy order (if such a *j* exists). This holds iff

$$\frac{v_i^*}{\sqrt{|S_i^*|}} \ge \frac{v_j^*}{\sqrt{|S_j^*|}} \quad \text{iff} \quad v_i^* \ge \frac{v_j^* \sqrt{|S_i^*|}}{\sqrt{|S_j^*|}} = \frac{v_j^*}{\sqrt{|S_j^*|/|S_i^*|}} = p_i.$$

Losers pay nothing: Obvious.

B. Nebel, R. Mattmüller - Game Theory July 9th, 2018

32 / 49

July 9th, 2018

31 / 49

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

UNI FREIBURG

Lemma

A mechanism for single-minded bidders that is monotone, that uses critical payments, and where losers pay nothing is incentive compatible.

Proof

(A) Truthful bids never lead to negative utility.

- If the declared bid loses, bidder has utility 0.
- If the declared bid wins, he has utility $v^* p^* > 0$, since $v^* > p^*$, because p^* is the critical payment, and if the bid wins, the bidder must have (truthfully) bid a value v^* of at least p^* .

torial Auctions

Minded

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

UNI FREIBURG

Proof (ctd.)

July 9th, 2018

- (B) Truthful bids never lead to lower utility than untruthful bids. Suppose declaration of untruthful bid $\langle S', v' \rangle$ deviating from truthful bid $\langle S^*, v^* \rangle$.
- (B.1) Case 1: untruthful bid is losing or not useful for bidder. Suppose $\langle S', v' \rangle$ is losing or $S^* \not\subseteq S'$ (bidder does not get the bundle he wants). Then utility < 0 in $\langle S', v' \rangle$, i.e., no improvement over utility when declaring $\langle S^*, v^* \rangle$ (cf. (A)).
- (B.2) Case 2: untruthful bid is winning and useful for bidder. Assume $\langle S', v' \rangle$ is winning and $S^* \subseteq S'$. To show that $\langle S^*, v^* \rangle$ is at least as good a bid as $\langle S', v' \rangle$, show that $\langle S^*, v' \rangle$ is at least as good as $\langle S', v' \rangle$ and that $\langle S^*, v^* \rangle$ is at least as good as $\langle S^*, v' \rangle$.

torial Auctions

Single-Minded

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

UNI FREIBURG

torial

Auctions

Single-

Minded

Complexit

Greedy Mechai

Proof (ctd.)

■ (B.2.a) Lying about desired bundle does not help.

Show that $\langle S^*, v' \rangle$ is at least as good as $\langle S', v' \rangle$.

Let p' be the payment for bid $\langle S', v' \rangle$ and p the payment for bid $\langle S^*, v' \rangle$.

For all x < p, $\langle S^*, x \rangle$ is losing, since p is the critical payment for S^* .

Due to monotonicity, also $\langle S', x \rangle$ is losing for all x < p. Hence, the critical payment p' for S' is at least p.

Thus, $\langle S^*, v' \rangle$ is still winning, if $\langle S', v' \rangle$ was, and leads to the same or even lower payment.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

35 / 49

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

UNI FREIBURG

torial

Single-

Minded

Auctions

Proof (ctd.)

■ (B.2.b) Lying about valuation does not help. Show that $\langle S^*, v^* \rangle$ is at least as good as $\langle S^*, v' \rangle$.

> ■ (B.2.b.i) Case 1: $\langle S^*, v^* \rangle$ is winning with payment p^* . If $v' > p^*$, then $\langle S^*, v' \rangle$ is still winning with the same payment, so there is no incentive to deviate to $\langle S^*, v' \rangle$. If $v' < p^*$, then $\langle S^*, v' \rangle$ is losing, so there is also no incentive to deviate to $\langle S^*, v' \rangle$.

■ (B.2.b.ii) Case 2: $\langle S^*, v^* \rangle$ is losing. Then v^* is less than the critical payment, i.e., the payment p' for a winning bid $\langle S^*, v' \rangle$ would be greater than v^* , making a deviation to $\langle S^*, v' \rangle$ unprofitable.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

36 / 49

Greedy Mechanism for Single-Minded Bidders: Incentive Compatibility

37 / 49

torial Auctions

Minded

Complexity

Greedy Mechan

Corollary

The greedy mechanism for single-minded bidders is incentive compatible.

Open question:

■ What about approximation factor of \sqrt{m} ?

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

In the next proof, we will need the Cauchy-Schwarz inequality:

Theorem (Cauchy-Schwarz inequality)

Let $x_i, y_i \in \mathbb{R}$. Then

 $\sum_{i} x_{j} y_{j} \leq \sqrt{\sum_{i} x_{j}^{2}} \cdot \sqrt{\sum_{i} y_{j}^{2}}.$

torial Auctions

Lemma

GMSBM produces a winner set W that induces a social welfare that is at most a factor \sqrt{m} worse than the optimal social welfare.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

38 / 49

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

UNI FREIBURG

Proof

- Let W^* be a set of winning bidders such that $\sum_{i \in W^*} v_i^*$ is maximal and $S_i^* \cap S_i^* = \emptyset$ for $i, j \in W^*$, $i \neq j$.
- Let *W* be the result of GMSMB.

Show:

$$\sum_{i \in W^*} v_i^* \leq \sqrt{m} \sum_{i \in W} v_i^*.$$

For $i \in W$ let

$$W_i^* = \{j \in W^* \mid j \ge i \text{ and } S_i^* \cap S_i^* \ne \emptyset\}$$

be the winners in W^* identical with i or not contained in W because of bidder i.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

39 / 49

41 / 49

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

Proof (ctd.)

For all $j \in W_i^*$, $S_i^* \cap S_i^* \neq \emptyset$, i.e., there is a $g(j) \in S_i^* \cap S_i^*$.

Since W^* induces an allocation, for all $j_1, j_2 \in W_i^*, j_1 \neq j_2$,

$$S_{i_1}^* \cap S_{i_2}^* = \emptyset$$

Hence.

$$(S_i^* \cap S_{i_1}^*) \cap (S_i^* \cap S_{i_2}^*) = \emptyset$$

i.e., $g(j_1) \neq g(j_2)$ for $j_1, j_2 \in W_i^*$ with $j_1 \neq j_2$, making g an injective function from W_i^* to S_i^* .

Thus,

$$|W_i^*| \le |S_i^*|. \tag{3}$$

July 9th, 2018 B. Nebel, R. Mattmüller - Game Theory torial Auctions

Single-Minded

torial

Auctions

Single-

Minded

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

UNI FREIBURG

torial

Single-

Minded

Proof (ctd.)

Since no $j \in W_i^*$ is before i in the greedy ordering, for such j,

$$v_j^* \leq rac{v_i^*}{\sqrt{|S_i^*|}} \sqrt{|S_j^*|}$$
 and, summing over $j \in W_i^*$

$$\sum_{j \in W_i^*} v_j^* \le \frac{v_i^*}{\sqrt{|S_i^*|}} \sum_{j \in W_i^*} \sqrt{|S_j^*|}. \tag{1}$$

With Cauchy-Schwarz for $x_j = 1$ and $y_j = \sqrt{|S_j^*|}$:

$$\sum_{j \in W_i^*} \sqrt{|S_j^*|} \le \sqrt{\sum_{j \in W_i^*} 1^2} \sqrt{\sum_{j \in W_i^*} |S_j^*|} = \sqrt{|W_i^*|} \sqrt{\sum_{j \in W_i^*} |S_j^*|}.$$
 (2)

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

40 / 49

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

torial

Proof (ctd.)

Since W^* induces an allocation and $W_i^* \subseteq W^*$,

$$\sum_{j\in W_i^*} |S_j^*| \le m.$$

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

42 / 49

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

Proof (ctd.)

Recall inequalities (1), (2), (3), and (4):

$$\begin{split} \sum_{j \in W_{i}^{*}} v_{j}^{*} \overset{(1)}{\leq} \frac{v_{i}^{*}}{\sqrt{|S_{i}^{*}|}} \sum_{j \in W_{i}^{*}} \sqrt{|S_{j}^{*}|}, & |W_{i}^{*}| \overset{(3)}{\leq} |S_{i}^{*}|, \\ \sum_{j \in W_{i}^{*}} \sqrt{|S_{j}^{*}|} \overset{(2)}{\leq} \sqrt{|W_{i}^{*}|} \sqrt{\sum_{j \in W_{i}^{*}} |S_{j}^{*}|}, & \sum_{j \in W_{i}^{*}} |S_{j}^{*}| \overset{(4)}{\leq} m. \end{split}$$

With these, we get (5):

$$\sum_{j \in W_{i}^{*}} v_{j}^{*} \stackrel{(1)}{\leq} \frac{v_{i}^{*}}{\sqrt{|S_{i}^{*}|}} \sum_{j \in W_{i}^{*}} \sqrt{|S_{j}^{*}|} \stackrel{(2)}{\leq} \frac{v_{i}^{*}}{\sqrt{|S_{i}^{*}|}} \sqrt{|W_{i}^{*}|} \sqrt{\sum_{j \in W_{i}^{*}} |S_{j}^{*}|} \\
\stackrel{(3)}{\leq} \frac{v_{i}^{*}}{\sqrt{|S_{i}^{*}|}} \sqrt{|S_{i}^{*}|} \sqrt{\sum_{j \in W_{i}^{*}} |S_{j}^{*}|} \stackrel{(4)}{\leq} \frac{v_{i}^{*}}{\sqrt{|S_{i}^{*}|}} \sqrt{|S_{i}^{*}|} \sqrt{m} = \sqrt{m} v_{i}^{*}. \dots$$

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

43 / 49

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

Proof (ctd.)

Recall (5) and (6):

$$\sum_{j \in W_i^*} v_j^* \stackrel{\text{(5)}}{\leq} \sqrt{m} v_i^*, \qquad W^* \stackrel{\text{(6)}}{\subseteq} \bigcup_{i \in W} W_i^*.$$

With these, we finally obtain the desired estimation

$$\sum_{i \in W^*} v_i^* \stackrel{\text{(6)}}{\leq} \sum_{i \in W} \sum_{i \in W^*} v_i^* \stackrel{\text{(5)}}{\leq} \sum_{i \in W} \sqrt{m} v_i^* = \sqrt{m} \sum_{i \in W} v_i^*.$$

Thus, the social welfare of W differs from the optimal social welfare by a factor of at most \sqrt{m} .

torial

Minded

torial

Greedy Mechanism for Single-Minded Bidders: Approximation Factor

Proof (ctd.)

Recall that for $i \in W$,

 $W_i^* = \{ j \in W^* | j \ge i \text{ and } S_i^* \cap S_i^* \ne \emptyset \}.$

Let $j \in W^*$.

- If $j \in W$: then by definition, $j \in W_i^*$ (assuming, WLOG, $S_i^* \neq \emptyset$).
- If $j \notin W$: then there must be some $i \in W$ such that i > iand $S_i^* \cap S_i^* \neq \emptyset$, i.e., $j \in W_i^*$.

Therefore, for each $j \in W^*$, there is an $i \in W$ such that $j \in W_i^*$:

$$W^* \subseteq \bigcup_{i \in W} W_i^*. \qquad \dots \tag{6}$$

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

44 / 49

Greedy Mechanism for Single-Minded **Bidders**

The following theorem summarizes the results in this chapter:

Theorem

July 9th, 2018

The greedy mechanism for single-minded bidders is efficiently computable, incentive compatible, and leads to an allocation whose social welfare is a \sqrt{m} -approximation of the optimal social welfare.

torial

Single-

torial

Minded

3 Summary

Combina torial Auctions

Single-Minded Bidders

Summary

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

48 / 49

Summary

■ In combinatorial auctions, bidders bid for bundles of items.

■ Exponential space needed just to represent and communicate valuations.

■ Therefore: Focus on special case of single-minded bidders (compact representation of valuations).

■ Unfortunately, still, optimal allocation NP-hard.

■ Solution: approximate optimal allocation.

Polynomial-time approximation possible for approximation factor no better than \sqrt{m} .

■ Greedy mechanism for single-minded bidders:

 \blacksquare achieves \sqrt{m} -approximation of social welfare,

■ is efficiently computable, and

is incentive compatible.

July 9th, 2018

B. Nebel, R. Mattmüller - Game Theory

49 / 49

Combinatorial Auctions

Single-Minded Bidders

Summary