Motivation

House Allocation Problem

1 Motivation

Mechanisms without Money

Motivation 1:
- According to Gibbard-Satterthwaite: In general, nontrivial social choice functions manipulable.
- One way out: Introduction of money (cf. VCG mechanisms)
- Other way out: Restriction of preferences (cf. single-peaked preferences; this chapter)

Motivation 2:
- Introduction of central concept from cooperative game theory: the core

Examples:
- House allocation problem
- Stable matchings

2 House Allocation Problem

- Definitions
- Top Trading Cycle Algorithm
House Allocation Problem

- **Players** $N = \{1, \ldots, n\}$.
- Each player i owns house i.
- Each player i has **strict linear preference order** \prec_i over the set of houses.
 - **Example:** $j \prec_i k$ means player i prefers house k to house j.
- **Alternatives** A: allocations of houses to players (permutations $\pi \in S_n$ of N).
 - **Example:** $\pi(i) = j$ means player i gets house j.
- **Objective:** reallocate the houses among the agents “appropriately”.

Note on preference relations:
- Arbitrary (strict linear) preference orders \prec_i over houses, but no arbitrary preference orders \preceq_i over A.
- **Rather:** Player i **indifferent** between different allocations π_1 and π_2 as long as $\pi_1(i) = \pi_2(i)$.
 - Indifference denoted as $\pi_1 \approx_i \pi_2$.
- If player i is not indifferent: $\pi_1 \prec_i \pi_2$ iff $\pi_1 \prec_i \pi_2$ for all $i \in M$ and $\pi_1 \prec_i \pi_2$ for at least one $i \in M$.

Important new aspect of house allocation problem:
- Players control resources to be allocated.
- Allocation can be subverted by subset of agents breaking away and trading among themselves.
- How to avoid such allocations?
- How to make allocation mechanism non-manipulable?

Notation: For $M \subseteq N$, let

$$A(M) = \{\pi \in A \mid \forall i \in M: \pi(i) \in M\}$$

be the set of allocations that can be achieved by the agents in M trading among themselves.

Definition (blocking coalition)
Let $\pi \in A$ be an allocation. A set $M \subseteq N$ is called a **blocking coalition** for π if there exists a $\pi' \in A(M)$ such that
- $\pi \preceq_i \pi'$ for all $i \in M$ and
- $\pi \prec_i \pi'$ for at least one $i \in M$.

Notation: $\pi \preceq_i \pi'$ for all $i \in M$ and $\pi \prec_i \pi'$ for at least one $i \in M$.

This makes Gibbard-Satterthwaite inapplicable.
Intuition:
A blocking coalition can receive houses everyone from the coalition likes at least as much as under allocation π, with at least one player being strictly better off, by trading among themselves.

Definition (core)
The set of allocations that is not blocked by any subset of agents is called the core.

Question: Is the core nonempty?

Top Trading Cycle Algorithm (TTCA)

Pseudocode:

- let $\pi(i) = i$ for all $i \in N$.
- while players unaccounted for do
 - consider subgraph G' of G where each vertex has only one outgoing arc: the least-colored one from G.
 - identify cycles in G'.
 - add corresponding cyclic permutations to π.
 - delete players accounted for and incident edges from G.
- end while
- output π.

Notation:
Let N_i be the set of vertices on cycles identified in iteration i.

Example:
- Player 1: 3 $\prec_i 1 \prec_i 4 \prec_i 2$
- Player 2: 4 $\prec_i 2 \prec_i 3 \prec_i 1$
- Player 3: 3 $\prec_i 4 \prec_i 2 \prec_i 1$
- Player 4: 1 $\prec_i 4 \prec_i 2 \prec_i 3$

Corresponding graph:

Iteration 1: $\pi(1) = 2$, $\pi(2) = 1$.
Iteration 2: $\pi(3) = 4$, $\pi(4) = 3$.
Done: $\pi(1) = 2$, $\pi(2) = 1$, $\pi(3) = 4$, $\pi(4) = 3$.
Top Trading Cycle Algorithm (TTCA)

Theorem
The core of the house allocation problem consists of exactly one matching.

Proof sketch
At most one matching: Show that if a matching is in the core, it must be the one returned by the TTCA.

In TTCA, each player in N_1 receives his favorite house.

Therefore, N_1 would form a blocking coalition to any allocation that does not assign to all of those players the houses they would receive in TTCA.

...
Stable Matchings

Problem statement:
- Given disjoint finite sets M of men and W of women.
- Assume WLOG that $|M| = |W|$ (introduce dummy-men/dummy-women).
- Each $m \in M$ has strict preference ordering \prec_m over W.
- Each $w \in W$ has strict preference ordering \prec_w over M.
- Matching: “appropriate” assignment of men to women such that each man is assigned to at most one woman and vice versa.

Note: A group of players can subvert a matching by opting out.

Definition (stability, blocking pair)
A matching is called unstable if there are two men m, m' and two women w, w' such that
- m is matched to w,
- m' is matched to w', and
- $w \prec_m w'$ and $m' \prec_w m$.
The pair $\langle m, w' \rangle$ is called a blocking pair. A matching that has no blocking pairs is called stable.

Definition (core)
The core of the matching game is the set of all stable matchings.

Example:
- Man 1: $w_3 \prec_{m_1} w_1 \prec_{m_1} w_2$
- Man 2: $w_2 \prec_{m_2} w_3 \prec_{m_2} w_1$
- Man 3: $w_3 \prec_{m_3} w_2 \prec_{m_3} w_1$
- Woman 1: $m_2 \prec_{w_1} m_3 \prec_{w_1} m_1$
- Woman 2: $m_2 \prec_{w_2} m_1 \prec_{w_2} m_3$
- Woman 3: $m_2 \prec_{w_3} m_3 \prec_{w_3} m_1$

Two matchings:
- Matching $\{\langle m_1, w_1 \rangle, \langle m_2, w_2 \rangle, \langle m_3, w_3 \rangle\}$ unstable (\langle m_1, w_2 \rangle is a blocking pair)
- Matching $\{\langle m_1, w_1 \rangle, \langle m_3, w_2 \rangle, \langle m_2, w_3 \rangle\}$ stable

Question: Is there always a stable matching?
Answer: Yes! And it can even be efficiently constructed.

How? Deferred acceptance algorithm!

Note: A group of players can subvert a matching by opting out.
Deferred Acceptance Algorithm

Definition (deferred acceptance algorithm, male proposals)

1. Each man proposes to his top-ranked choice.
2. Each woman who has received at least one proposal (including tentatively kept one from earlier rounds) tentatively keeps top-ranked proposal and rejects rest.
3. If no man is left rejected, stop.
4. Otherwise, each man who has been rejected proposes to his top-ranked choice among the women who have not rejected him. Then, goto 2.

Deferred Acceptance Algorithm

Example:

- Man 1: \(w_3 \prec m_1 w_1 \prec m_1 w_2 \)
- Man 2: \(w_2 \prec m_2 w_3 \prec m_2 w_1 \)
- Man 3: \(w_3 \prec m_3 w_2 \prec m_3 w_1 \)
- Woman 1: \(m_2 \prec w_1 m_3 \prec w_1 m_1 \)
- Woman 2: \(m_2 \prec w_1 m_1 \prec w_2 m_3 \)
- Woman 3: \(m_2 \prec w_1 m_3 \prec w_3 m_1 \)

Deferred acceptance algorithm:

1. \(m_1 \) proposes to \(w_2, m_2 \) to \(w_1, \) and \(m_3 \) to \(w_1. \)
2. \(w_1 \) keeps \(m_3 \) and rejects \(m_2, w_2 \) keeps \(m_1. \)
3. \(m_2 \) now proposes to \(w_3. \)
4. \(w_3 \) keeps \(m_2. \)

Resulting matching: \(\{ (m_1, w_2), (m_2, w_3), (m_3, w_1) \} \).

Deferred Acceptance Algorithm

Theorem

The deferred acceptance algorithm with male proposals terminates in a stable matching.

Proof

Suppose not.

Then there exists a blocking pair \((m_1, w_1) \) with \(m_1 \) matched to some \(w_2 \) and \(w_1 \) matched to some \(m_2. \)

Since \((m_1, w_1) \) is blocking and \(w_2 \prec m_1 w_1, \) in the proposal algorithm, \(m_1 \) would have proposed to \(w_1 \) before \(w_2. \)

Since \(m_1 \) was not matched with \(w_1 \) by the algorithm, it must be because \(w_1 \) received a proposal from a man she ranked higher than \(m_1. \)
Deferred Acceptance Algorithm

Proof (ctd.)
Since the algorithm matches her to \(m_2 \) it follows that \(m_1 \prec_w m_2 \).
This contradicts the fact that \(\langle m_1, w_1 \rangle \) is a blocking pair.

Analogous version where the women propose: outcome would also be a stable matching.

Deferred Acceptance Algorithm

Definitions

Deferred Acceptance Algorithm

The mechanism associated with the (fe)male-proposal algorithm cannot be manipulated by the (fe)males.

4 Summary

Theorem
The stable matching produced by the (fe)male-proposal deferred acceptance algorithm is (fe)male-optimal.

In general, there is no stable matching that is male-optimal and female-optimal.
Summary

- **Avoid Gibbard-Satterthwaite** by restricting domain of preferences.

- **House allocation** problem:
 - Solved using top trading cycle algorithm.
 - Algorithm finds unique solution in the core, where no blocking coalition of players has an incentive to break away.
 - The top trading cycle mechanism cannot be manipulated.

- **Stable matchings**:
 - Solved using deferred acceptance algorithm.
 - Algorithm finds a stable matching in the core, where no blocking pair of players has an incentive to break away.
 - The mechanism associated with the (fe)male-proposal algorithm cannot be manipulated by the (fe)males.