

Second Price Auctions

wins bid.

June 25th, 2018

6/35

BURG Second Price Auctions **FREI** Second Price Formally: Auctions A = NMechanisms if a = iWi VCG $\mathbf{V}_i(a) =$ Mechanisms 0 else ■ What about payments? Say player *i* wins: \square $p^* = 0$ (winner pays nothing): bad idea, players would manipulate and publicly declare values $w'_i \gg w_i$. \square $p^* = w_i$ (winner pays his valuation): bad idea, players would manipulate and publicly declare values $w'_i = w_i - \varepsilon$. **better**: $p^* = \max_{i \neq i} w_i$ (winner pays second highest bid). B. Nebel, R. Mattmüller - Game Theory 7/35 June 25th, 2018

B. Nebel, R. Mattmüller - Game Theory

UNI FREIBURG **Mechanisms Definition (Mechanism)** Second Price Auctions A mechanism $\langle f, p_1, \ldots, p_n \rangle$ consists of Incentive Compatible **a social choice function** $f: V_1 \times \cdots \times V_n \to A$ and Mechanisms ■ for each player *i*, a payment function VCG Mechanisms $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}.$ Definition (Incentive Compatibility) A mechanism $\langle f, p_1, \dots, p_n \rangle$ is called incentive compatible if for each player i = 1, ..., n, for all preferences $v_1 \in V_1, ..., v_n \in V_n$ and for each preference $v'_i \in V_i$, $v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$

B. Nebel, R. Mattmüller - Game Theory

June 25th, 2018

UNI FREIBURG VCG Mechanisms Second Price Auctions If $\langle f, p_1, \dots, p_n \rangle$ is incentive compatible, truthfully declaring Compatible ones preference is dominant strategy. VCG ■ The Vickrey-Clarke-Groves mechanism is an incentive Mechanisms compatible mechanism that maximizes "social welfare", Examples i.e., the sum over all individual utilities $\sum_{i=1}^{n} v_i(a)$. Idea: Reflect other players' utilities in payment functions, align all players' incentives with goal of maximizing social welfare. June 25th, 2018 B. Nebel, R. Mattmüller - Game Theory 15/35

12/35

VCG Mechanisms

B. Nebel, R. Mattmüller - Game Theory

VCG Mechanisms	BUKG
Theorem (Vickrey-Clarke-Groves)	Second Price
Every VCG mechanism is incentive compatible.	Auctions
Proof	Compatible Mechanisms
Let <i>i</i> , v_{-i} , v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i .	VCG Mechanisms Clarke Pivot Rule Examples
Let $a = f(v_i, v_{-i})$ and $a' = f(v'_i, v_{-i})$. Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$	
Alternative $a = f(v_i, v_{-i})$ maximizes social welfare $\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \ge v_i(a') + \sum_{j \neq i} v_j(a').$	
$\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \geq v_i(f(v_i', v_{-i})) - p_i(v_i', v_{-i}).$	
June 25th, 2018 B. Nebel, R. Mattmüller – Game Theory 17 / 35	

June 25th, 2018

16/35

June 25th, 2018

Clarke Pivot Function

June 25th, 2018

B. Nebel, R. Mattmüller - Game Theory

Clarke Pivot Rule

with him.

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) > 0$ for all i = 1, ..., n, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, ..., v_n)$ be the alternative maximizing $\sum_{i=1}^n v_i(a)$, and *b* the alternative maximizing $\sum_{i \neq i} v_i(b)$.

Utility of player *i*: $u_i = v_i(a) + \sum_{i \neq i} v_i(a) - \sum_{i \neq i} v_i(b)$.

Payment function for *i*: $p_i(v_1, \ldots, v_n) = \sum_{i \neq i} v_i(b) - \sum_{i \neq i} v_i(a)$.

Since *b* maximizes $\sum_{i \neq i} v_i(b)$: $p_i(v_1, \ldots, v_n) \ge 0$ (no positive transfers).

•	•	•	

B. Nebel, R. Mattmüller - Game Theory

22/35

20/35

UNI FREIBURG

Second Pric

Mechanisms VCG

Mechanism Clarke Pivot Bule

Auctions

Clarke Pivot R	ule	BURG
Proof (ctd.)		
Individual rationalit	ty: Since $v_i(b) \ge 0$,	Auctions
$\mu = \mu(2)$	$\mathbf{\nabla}_{\mathbf{V}}(\mathbf{a}) = \mathbf{\nabla}_{\mathbf{V}}(\mathbf{b}) > \mathbf{\nabla}_{\mathbf{V}}(\mathbf{a}) = \mathbf{\nabla}_{\mathbf{V}}(\mathbf{b})$	Incentive Compatible Mechanisms
$u_i = v_i(a) + j$	$\sum_{i \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \geq \sum_{j=1} v_j(a) - \sum_{j=1} v_j(b)$	V)• VCG Mechanisms Clarke Pivot Rule
Since a maximizes	$\sum_{j=1}^{n} v_j(a),$	Examples
	$\sum_{j=1}^n v_j(a) \geq \sum_{j=1}^n v_j(b)$	
and hence $u_i \ge 0$.		
Therefore, the med	chanism is also individually rational	
June 25th, 2018	B. Nebel. R. Mattmüller – Game Theory	23 / 35

V

Vickrey Au	ction as a VCG Mechanism	BURG
$A = N. Val$ $a maximiz$ $Let a = f(v)$ $Payments$ $But max_{be}$ $Winner pa$	luations: w_i . $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq 2$ es social welfare $\sum_{i=1}^{n} v_i(a)$ iff $a \max_{j \in A} w_j$ be the high $\sum_{i=1}^{n} (v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{i \neq j} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$. Any value of second highest bid:	f(a). kimizes w_a . hest bidder. $\sum_{j \neq i} v_j(a)$. Second Print Auctions Incentive Compatible Mechanism VCG Mechanism
p	$a(v_1,\ldots,v_n) = \max_{b\in A} \sum_{j\neq a} v_j(b) - \sum_{j\neq a} v_j(a)$	Examples
	$= \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}}$	} W b.
Non-winne	ers pay nothing: For $i \neq a$,	
$p_i($	$v_1,\ldots,v_n) = \max_{b\in A}\sum_{j\neq i}v_j(b) - \sum_{j\neq i}v_j(a)$	
	$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a$	$v_a = 0.$
June 25th, 2018	B. Nebel, R. Mattmüller – Game Theory	24 / 35

.DULR

Case 2: Project undertaken, *i* not pivotal:

$$p_i(v_{1..n}, v_G) = \left(\sum_{j \neq i} w_j - C\right) - \left(\sum_{j \neq i} w_j - C\right) = 0$$

Case 3: Project not undertaken:

 $p_i(v_{1..n},v_G)=0$

Example: Public Project

$$\begin{array}{l}
 If the project costs C units.
 If the project costs costs costs and tosts and to the project$$

B. Nebel, R. Mattmüller - Game Theory

30 / 35

Example: Buying a Path in a Network

Example: B	uying a Path in a Network (ctd.)		BURG
 For G = (V VCG mech 	(V, E) and $e \in E$ let $G \setminus e = (V, E \setminus \{e\})$.	2	Second Pric Auctions
	$h_e(v_{-e}) = \max_{p' \in G \setminus e} \sum_{e' \in p'} - c_{e'}$		Incentive Compatible Mechanism
i.e., the co (Assume t ■ Payment f	best of the cheapest path from <i>s</i> to <i>t</i> in $G \setminus e$ that <i>G</i> is 2-connected, s.t. such p' exists.) functions: for chosen path $p = f(v_1,, v_n)$,		VCG Mechanisms Clarke Pivot Ruke Examples
	$p_e(v_1,\ldots,v_n) = h_e(v_{-e}) - \sum_{e \neq e' \in p} -c_{e'}.$		
Case Case	1: $e \notin p$. Then $p_e(v_1,, v_n) = 0$. 2: $e \in p$. Then		
	$p_{e}(v_{1},\ldots,v_{n}) = \max_{p'\in G\setminus e}\sum_{e'\in p'} -c_{e'} - \sum_{e\neq e'\in p} -c_{e'}.$		
June 25th, 2018	B. Nebel, R. Mattmüller – Game Theory	33 / 35	

