Game Theory 8. Social Choice Theory

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller June 14th, 2016

UNI FREIBURG

Social Choice Theory

Introduction Social Choice Functions Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Social Choice Theory

Social Choice Theory

Motivation: Aggregation of individual preferences

Examples:

- political elections
- council decisions
- Eurovision Song Contest

Question: If voters' preferences are private, then how to implement aggregation rules such that voters vote truthfully (no "strategic voting")?

Social Choice Theory

Introduction

Social Choice Functions Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Definition (Social Welfare and Social Choice Function)

Let A be a set of alternatives (candidates) and L be the set of all linear orders on A. For n voters, a function

 $F: L^n \to L$

is called a social welfare function. A function

 $f: L^n \to A$

is called a social choice function.

Notation: Linear orders $\prec \in L$ express preference relations. $a \prec_i b$: voter *i* prefers candidate *b* over candidate *a*. $a \prec b$: candidate *b* socially preferred over candidate *a*.

Social Choice Theory

Introduction

Social Choice Functions Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

- Plurality voting (aka first-past-the-post or winner-takes-all):
 - only top preferences taken into account
 - candidate with most top preferences wins
 - Drawback: Wasted votes, compromising, winner only preferred by minority

Plurality voting with runoff:

- First round: two candidates with most top votes proceed to second round (unless absolute majority)
- Second round: runoff

Drawback: still, tactical voting and strategic nomination possible.

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

Instant runoff voting:

- each voter submits his preference order
- iteratively candidates with fewest top preferences are eliminated until one candidate has absolute majority

Drawback: Tactical voting still possible.

Borda count:

- each voter submits his preference order over the m candidates
- if a candidate is in position *j* of a voter's list, he gets *m*−*j* points from that voter
- points from all voters are added
- candidate with most points wins

Drawback: Tactical voting still possible ("Voting opponent down").

UNI FREIBURG

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

Condorcet winner:

- each voter submits his preference order
- perform pairwise comparisons between candidates
- if one candidate wins all his pairwise comparisons, he is the Condorcet winner

Drawback: Condorcet winner does not always exist.

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

Plurality voting:

- Plurality voting with runoff:
 - first round:
 - second round:

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	с	b	с	с
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

Plurality voting:

- Plurality voting with runoff:
 - first round:
 - second round:

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

Plurality voting: candidate e wins (8 votes)

- Plurality voting with runoff:
 - first round:
 - second round:

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	a

- Plurality voting: candidate e wins (8 votes)
- Plurality voting with runoff:
 - first round:
 - second round:

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	a

- Plurality voting: candidate e wins (8 votes)
- Plurality voting with runoff:
 - first round: candidates e (8 votes) and a (6 votes) proceed
 - second round:

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

- Plurality voting: candidate e wins (8 votes)
- Plurality voting with runoff:
 - first round: candidates e (8 votes) and a (6 votes) proceed
 - second round: candidate a (6+4+3+1 = 14 votes) beats candidate e (8+1 = 9 votes)

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	с	b	с	с
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

Instant runoff voting:

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	с	b	с	с
3rd	b	с	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	a

Instant runoff voting: First elimination: d

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	с	b	с	с
3rd	b	с	d	d	а	b
4th	с	е	а	а	b	е
5th	а	d	е	е	е	а

Instant runoff voting:

First elimination: d Second elimination: b

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	с	b	с	С
3rd	b	с	d	d	а	b
4th	с	е	а	а	b	е
5th	а	d	е	е	е	а

Instant runoff voting:

First elimination: d Second elimination: b Third elimination: a

> Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	с	d	d	а	b
4th	с	е	а	а	b	е
5th	а	d	е	е	е	а

Instant runoff voting:

First elimination: d Second elimination: b Third elimination: a Now c has absolute majority and wins.

> Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1	
1st	е	а	b	С	d	d	4 points
2nd	d	b	С	b	с	С	3 points
3rd	b	с	d	d	a	b	2 points
4th	с	е	а	а	b	е	1 point
5th	а	d	е	е	е	а	0 points

Borda count:

Cand. a: $8 \cdot 0 + 6 \cdot 4 + 4 \cdot 1 + 3 \cdot 1 + 1 \cdot 2 + 1 \cdot 0 = 33$ pts Cand. b: $8 \cdot 2 + 6 \cdot 3 + 4 \cdot 4 + 3 \cdot 3 + 1 \cdot 1 + 1 \cdot 2 = 62$ pts Cand. c: $8 \cdot 1 + 6 \cdot 2 + 4 \cdot 3 + 3 \cdot 4 + 1 \cdot 3 + 1 \cdot 3 = 50$ pts Cand. d: $8 \cdot 3 + 6 \cdot 0 + 4 \cdot 2 + 3 \cdot 2 + 1 \cdot 4 + 1 \cdot 4 = 46$ pts Cand. e: $8 \cdot 4 + 6 \cdot 1 + 4 \cdot 0 + 3 \cdot 0 + 1 \cdot 0 + 1 \cdot 1 = 39$ pts

~ Candidate b wins.

> Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	с	b	с	С
3rd	b	С	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

Condorcet winner: Ex.: a \prec_i b 16 times, b \prec_i a 7 times b d а С е 0 1 а 0 0 _ h 1 candidate b wins. 1 1 _ 1 0 1 С _ d 1 0 0 0 0 0 0 е

UNI FREIBURG

> Social Choice Theory

Introduction

Social Choice Functions

Methods Arrow's

Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	с	b	с	С
3rd	b	С	d	d	а	b
4th	С	е	a	а	b	е
5th	а	d	е	е	е	a

- Plurality voting: candidate e wins.
- Plurality voting with runoff: candidate a wins.
- Instant runoff voting: candidate c wins.
- Borda count / Condorcet winner: candidate b wins.
- Different winners for different voting systems.
- Which voting system to prefer? Can even strategically choose voting system!

Social Choice Theory

Introduction

Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Condorcet Paradox Why Condorcet Winner not Always Exists

Example: Preferences of voters 1, 2 and 3 on candidates *a*, *b* and *c*.

 $a \prec_1 b \prec_1 c$ $b \prec_2 c \prec_2 a$ $c \prec_3 a \prec_3 b$

Then we have cyclical preferences.

 a
 b
 c

 a
 0
 1

 b
 1
 0

 c
 0
 1

 $a \prec b, b \prec c, c \prec a$: violates transitivity of linear order consistent with these preferences.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

UNI FREIBURG

> Social Choice Theory

> > Social Choice Functions

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Condorcet Methods

Social Choice Theory

Introduction Social Choice Functions

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Definition

A Condorcet method return a Condorcet winner, if one exists.

One particular Condorcet method: the Schulze method. Relatively new: Proposed in 1997 Already many users: Debian, Ubuntu, Pirate Party, ...

BURG NE

Condorcet

Theorem Some

Summarv

Methods Arrow's

Notation: d(X, Y) = number of pairwise comparisons won by X

Definition

against Y

For candidates X and Y, there exists a path C_1, \ldots, C_n between X and Y of strength z if

 $C_1 = X$.

$$\bullet C_n = Y,$$

$$d(C_i, C_{i+1}) > d(C_{i+1}, C_i) \text{ for all } i = 1, \dots, n-1, \text{ and }$$

 $d(C_i, C_{i+1}) > z$ for all $i = 1, \dots, n-1$ and there exists $j = 1, \dots, n-1$ s.t. $d(C_i, C_{i+1}) = z$

Example: path of strength 3.

$$a \xrightarrow{8} b \xrightarrow{5} c \xrightarrow{3} d$$

Definition

Let p(X, Y) be the maximal value *z* such that there exists a path of strength *z* from *X* to *Y*, and p(X, Y) = 0 if no such path exists.

Then, the Schulze winner is the Condorcet winner, if it exists. Otherwise, a potential winner is a candidate *a* such that $p(a,X) \ge p(X,a)$ for all $X \ne a$.

Tie-Breaking is used between potential winners.

UNI FREIBURG

Social Choice Theory

Introduction Social Choice Functions

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Schulze Method Example

# voters	3	2	2	2
1st	а	d	d	С
2nd	b	а	b	b
3rd	С	b	С	d
4th	d	с	а	а

Is there a Condorcet winner?

	а	b	С	d
а	-	1	1	0
b	0	-	1	1
с	0	0	_	1
d	1	0	0	_

Social Choice Theory

> Introduction Social Choice

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

 $\rightsquigarrow No!$

June 14th, 2016

Schulze Method Example

# voters	3	2	2	2
1st	а	d	d	С
2nd	b	а	b	b
3rd	с	b	С	d
4th	d	с	а	а

Weights d(X, Y):

	а	b	с	d
а	-	5	5	3
b	4	_	7	5
С	4	2	_	5
d	6	4	4	-

> Social Choice Theory

> > Introduction Social Choice

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

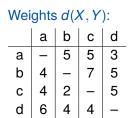
Some Positive Results

Summary

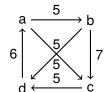
June 14th, 2016

Schulze Method

# voters	3	2	2	2
1st	а	d	d	С
2nd	b	а	b	b
3rd	с	b	С	d
4th	d	с	а	а



As a graph:



Social Choice Theory

Introduction Social Choice

Condorcet Methods

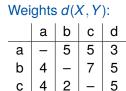
Arrow's Impossibility Theorem

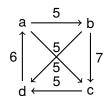
Gibbard-Satterthwaite Theorem

Some Positive Results

Schulze Method

# voters	3	2	2	2
1st	а	d	d	С
2nd	b	а	b	b
3rd	с	b	с	d
4th	d	с	а	а





Path strengths p(X, Y):

	• • • • •				
	а	b	С	d	
а	_	5	5	5	
a b	5 5	—	7	5	
с	5	5	-	5	
d	6	5	5	_	

Social Choice Theory

> Introduction Social Choice Functions

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

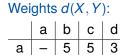
Some Positive Results

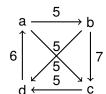
Summary

d 6 4 4

Schulze Method Example

# voters	3	2	2	2
1st	а	d	d	С
2nd	b	a	b	b
3rd	с	b	С	d
4th	d	с	а	а





Path strengths p(X, Y):

	а	b	c	d
а	_	5	5	5
b	5	-	7	5
С	5	5	-	5
d	6	5	5	-

UNI FREIBURG

Social Choice Theory

Introduction Social Choice

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Potential winners: b and d.

7 | 5

5

June 14th, 2016

b 4 –

c | 4 | 2

d 6 4 4

According to Wikipedia

(http://en.wikipedia.org/wiki/Schulze_method), the method satisfies a large number of desirable criteria:

Unrestricted domain, non-imposition, non-dictatorship, Pareto criterion, monotonicity criterion, majority criterion, majority loser criterion, Condorcet criterion, Condorcet loser criterion, Schwartz criterion, Smith criterion, independence of Smith-dominated alternatives, mutual majority criterion, independence of clones, reversal symmetry, mono-append, mono-add-plump, resolvability criterion, polynomial runtime, prudence, MinMax sets, Woodall's plurality criterion if winning votes are used for d[X,Y], symmetric-completion if margins are used for d[X,Y].

Soci

Social Choice Theory

Introduction Social Choice Functions

Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Arrow's Impossibility Theorem

Motivation: It appears as if all considered voting systems encourage strategic voting.

Question: Can this be avoided or is it a fundamental problem?

Answer (simplified): It is a fundamental problem!

BURG

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Properties of Social Welfare Functions

Desirable properties of social welfare functions:

Definition (Unanimity)

A social welfare function satisfies

- total unanimity if for all $\prec \in L$, $F(\prec, ..., \prec) = \prec$.
- **partial unanimity if for all** $\prec_1, \prec_2, \ldots, \prec_n \in L$, $a, b \in A$,

$$a \prec_i b$$
 for each $i = 1, \ldots, n \implies a \prec b$

where
$$\prec := F(\prec_1, \ldots, \prec_n)$$
.

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Remark

Partial unanimity implies total unanimity, but not vice versa.

June 14th, 2016

Properties of Social Welfare Functions

Desirable properties of social welfare functions:

Definition (Non-Dictatorship)

A voter *i* is called a dictator for *F*, if $F(\prec_1, ..., \prec_i, ..., \prec_n) = \prec_i$ for all orders $\prec_1, ..., \prec_n \in L$. *F* is called non-dictatorial if there is no dictator for *F*.

Definition (Independence of Irrelevant Alternatives, IIA)

F satisfies IIA if for all alternatives a, b the social preference between a and b depends only on the preferences of the voters between a and b.

Formally, for all $(\prec_1, \ldots, \prec_n)$, $(\prec'_1, \ldots, \prec'_n) \in L^n$, $\prec := F(\prec_1, \ldots, \prec_n)$, and $\prec' := F(\prec'_1, \ldots, \prec'_n)$,

 $a \prec_i b$ iff $a \prec'_i b$, for each $i = 1, ..., n \implies a \prec b$ iff $a \prec' b$.

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite

Some Positive Results

Properties of Social Welfare Functions

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*.

To show: $a \prec b$ (with $\prec := F(\prec_1, ..., \prec_n)$). Define $\prec'_1, ..., \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, ..., \prec'_n) = F(\prec_1, ..., \prec_1) = \prec_1$. Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold. UNI FREIBUR

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*. To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$). Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec$ Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold. FREIBUR

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*. To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$). Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec$ Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold. UNI FREIBUR

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*. To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$). Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec_1$. Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold. Social Choice

Ř

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*. To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$). Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec_1$. Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold. UNI FREIBURO

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*. To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$). Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec_1$. Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold. FREIBUR

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*. To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$). Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec_1$. Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold

Ř

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters *i*. To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$). Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*. By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec_1$. Hence, we have $a \prec' b$. Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters *i*. By IIA, it follows $a \prec b$ iff $a \prec' b$. From $a \prec' b$ we conclude that $a \prec b$ must hold. FREIBUR

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Gibbard-Satterthwaite Theorem

Some Positive Results

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Lemma (pairwise neutrality)

Let F be a social welfare function satisfying (total or partial) unanimity and independence of irrelevant alternatives.

Let $(\prec_1, \ldots, \prec_n)$ and $(\prec'_1, \ldots, \prec'_n)$ be two preference profiles, $\prec := F(\prec_1, \ldots, \prec_n)$ and $\prec' := F(\prec'_1, \ldots, \prec'_n)$. Then,

 $a \prec_i b$ iff $c \prec'_i d$ for each $i = 1, \dots, n \implies a \prec b$ iff $c \prec' d$.

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Lemma (pairwise neutrality)

Let *F* be a social welfare function satisfying (total or partial) unanimity and independence of irrelevant alternatives. Let $(\prec_1, \ldots, \prec_n)$ and $(\prec'_1, \ldots, \prec'_n)$ be two preference profiles, $\prec := F(\prec_1, \ldots, \prec_n)$ and $\prec' := F(\prec'_1, \ldots, \prec'_n)$. Then,

 $a \prec_i b$ iff $c \prec'_i d$ for each $i = 1, \dots, n \implies a \prec b$ iff $c \prec' d$.

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Lemma (pairwise neutrality)

Let *F* be a social welfare function satisfying (total or partial) unanimity and independence of irrelevant alternatives. Let $(\prec_1, \ldots, \prec_n)$ and $(\prec'_1, \ldots, \prec'_n)$ be two preference profiles, $\prec := F(\prec_1, \ldots, \prec_n)$ and $\prec' := F(\prec'_1, \ldots, \prec'_n)$. Then,

 $a \prec_i b$ iff $c \prec'_i d$ for each $i = 1, ..., n \implies a \prec b$ iff $c \prec' d$.

Proof

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*). Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a, b) is copied from \prec_i and the order of the pairs (c, d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d$ $(\prec'' := F(\prec''_1, ..., \prec''_n))$. Because of IIA, we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$. With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

BURG

Theory Arrow's

Main Theorem

Theorem Some Positive

Proof

Ž m

Wlog., $a \prec b$ (otherwise, rename a and b) and $c \neq d \ c \neq b$

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

June 14th. 2016

Theory

Arrow's

Main Theorem

Theorem

Some Positive

Proof

FREIBUR

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*).

Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a, b) is copied from \prec_i and the order of the pairs (c, d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d (\prec'' := F(\prec''_1, ..., \prec''_n))$. Because of IIA, we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$. With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

June 14th, 2016

Proof

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*). Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a,b) is copied from \prec_i and the order of the pairs (c,d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d$ $(\prec'' := F(\prec''_1, ..., \prec''_n))$. Because of IIA, we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$. With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

June 14th, 2016

BUR

Arrow's

Main Theorem

Theorem Some Positive

Proof

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*). Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a,b) is copied from \prec_i and the order of the pairs (c,d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d$ ($\prec'' := F(\prec''_1, ..., \prec''_n)$). Because of IIA, we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$. With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

June 14th, 2016

BUR

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*). Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a, b) is copied from \prec_i and the order of the pairs (c, d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d$ $(\prec'' := F(\prec''_1, ..., \prec''_n))$. Because of IIA, we have $a \prec'' b$.

By transitivity, we obtain $c \prec'' d$. With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

June 14th, 2016

Social Choice Theory

8

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*). Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a, b) is copied from \prec_i and the order of the pairs (c, d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d$ $(\prec'' := F(\prec''_1, ..., \prec''_n))$. Because of IIA, we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

2

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*). Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a,b) is copied from \prec_i and the order of the pairs (c,d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d$ $(\prec'' := F(\prec''_1, ..., \prec''_n))$. Because of IIA, we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$. With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

8

Arrow's

Main Theorem

Theorem

Positive

Proof

Wlog., $a \prec b$ (otherwise, rename *a* and *b*) and $c \neq d$ $c \neq b$ (otherwise, rename *a* and *c* as well as *b* and *d*). Construct a new preference profile $(\prec''_1, \ldots, \prec''_n)$, where $c \prec''_i a$ (unless c = a) and $b \prec''_i d$ (unless b = d) for all $i = 1, \ldots, n$, whereas the order of the pairs (a,b) is copied from \prec_i and the order of the pairs (c,d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d$ $(\prec'' := F(\prec''_1, ..., \prec''_n))$. Because of IIA, we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$. With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

8

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick *c* and create \prec''_i from $\prec_i b$ y moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec'''_i from \prec''_i by moving *b* directly below *a*. Construct \prec'''_i from \prec''_i by moving *a* directly below *c*. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec'''' a$. Comparing \prec'''' with \prec , we notice: $a \prec_i b$ iff $b \prec'''' a$, hence $a \prec'_i b$ iff $a \prec'''_i b$. By IIA, it follows, $a \prec' b$ iff $a \prec'''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$.

Pick *c* and create \prec''_i from \prec_i by moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec'''_i from \prec'''_i by moving *b* directly below *a*. Construct \prec'''_i from \prec'''_i by moving *a* directly below *c*. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec'''' a$. Comparing \prec''''_i with \prec , we notice: $a \prec_i b$ iff $b \prec'''_i a$, hence $a \prec'_i b$ iff $a \prec'''_i b$. By IIA, it follows, $a \prec' b$ iff $a \prec'''_i b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick c and create \prec''_i from $\prec_i b$ y moving c directly below b, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec''_i from $\prec''_i b$ y moving b directly below a. Construct \prec'''_i from $\prec''_i b$ y moving a directly below c. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec''' a$. Comparing \prec'''_i with \prec , we notice: $a \prec_i b$ iff $b \prec''' a$, hence $a \prec'_i b$ iff $a \prec'''_i b$. By IIA, it follows, $a \prec' b$ iff $a \prec''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick *c* and create \prec''_i from $\prec_i b$ y moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec''_i from $\prec''_i b$ y moving *b* directly below *a*. Construct \prec''_i from $\prec''_i b$ y moving *b* directly below *c*. It follows that $a \prec'' c$ iff $b \prec'' c$ and $b \prec''' c$ iff $b \prec''' a$. Comparing \prec'''_i with \prec , we notice: $a \prec_i b$ iff $b \prec''' a$, hence $a \prec'_i b$ iff $a \prec'''_i b$. By IIA, it follows, $a \prec' b$ iff $a \prec''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick *c* and create \prec''_i from \prec_i by moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec'''_i from \prec''_i by moving *b* directly below *a*. Construct \prec'''_i from \prec''_i by moving *a* directly below *c*. It follows that $a \prec'' c$ iff $b \prec'' c$ and $b \prec''' c$ iff $b \prec''' a$. Comparing \prec'''_i with \prec , we notice: $a \prec_i b$ iff $b \prec''' a$, hence $a \prec'_i b$ iff $a \prec'''_i b$. By IIA, it follows, $a \prec' b$ iff $a \prec''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick *c* and create \prec''_i from $\prec_i b$ y moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec'''_i from $\prec''_i b$ y moving *b* directly below *a*. Construct \prec'''_i from $\prec''_i b$ y moving *b* directly below *c*. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec''' a$. Comparing \prec'''_i with \prec , we notice: $a \prec_i b$ iff $b \prec''' a$, hence $a \prec'_i b$ iff $a \prec'''_i b$. By IIA, it follows, $a \prec' b$ iff $a \prec''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURO

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick *c* and create \prec''_i from $\prec_i b$ y moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec'''_i from \prec''_i by moving *b* directly below *a*. Construct \prec'''_i from $\prec''_i b$ y moving *b* directly below *c*. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec'''' a$. Comparing \prec''' with \prec , we notice: $a \prec_i b$ iff $b \prec''' a$, hence $a \prec'_i b$ iff $a \prec''' b$. By IIA, it follows, $a \prec' b$ iff $a \prec''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick *c* and create \prec''_i from $\prec_i b$ y moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec'''_i from $\prec''_i b$ y moving *b* directly below *a*. Construct \prec'''_i from $\prec''_i b$ y moving *b* directly below *c*. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec'''' a$. Comparing \prec'''' with \prec , we notice: $a \prec_i b$ iff $b \prec'''' a$, hence $a \prec'_i b$ iff $a \prec'''' b$. By IIA, it follows, $a \prec' b$ iff $a \prec''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick *c* and create \prec''_i from \prec_i by moving *c* directly below *b*, i.e., $a \prec_i b$ iff $a \prec''_i c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec'''_i from \prec''_i by moving *b* directly below *a*. Construct \prec'''_i from $\prec''_i b$ moving *a* directly below *c*. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec'''' a$. Comparing \prec'''' with \prec , we notice: $a \prec_i b$ iff $b \prec'''' a$, hence $a \prec'_i b$ iff $a \prec'''' b$. By IIA, it follows, $a \prec' b$ iff $a \prec'''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Arrow's Impossibility Theorem

Every social welfare function over more than two alternatives that satisfies unanimity and independence of irrelevant alternatives is necessarily dictatorial.

Proof

We assume unanimity and independence of irrelevant alternatives.

Consider two elements $a, b \in A$ mit $a \neq b$ and construct a sequence $(\pi^i)_{i=0,...,n}$ of preference profiles such that in π^i exactly the first *i* voters prefer *b* to *a*, i.e., $a \prec_j b$ iff $j \leq i$:

UNI FREIBUR

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Arrow's Impossibility Theorem

Every social welfare function over more than two alternatives that satisfies unanimity and independence of irrelevant alternatives is necessarily dictatorial.

Proof

We assume unanimity and independence of irrelevant alternatives.

Consider two elements $a, b \in A$ mit $a \neq b$ and construct a sequence $(\pi^i)_{i=0,...,n}$ of preference profiles such that in π^i exactly the first *i* voters prefer *b* to *a*, i.e., $a \prec_j b$ iff $j \leq i$:

UNI FREIBUR

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

. . .

Proof (ctd.)

	π^0		π^{i^*-1}	π^{i^*}		π^n
1:	b ≺ ₁ a		<mark>a</mark> ≺ ₁ b	<mark>a</mark> ≺ ₁ b		<mark>a</mark> ≺ ₁ b
÷	÷	·	:	÷	·	÷
<i>i</i> * – 1:	<i>b</i> ≺ _{i*−1}		<mark>a</mark> ≺ _{i*−1} b	<mark>a</mark> ≺ _{i*−1} b		a ≺ _{i*−1} b
<i>i*</i> :	b ≺ _{i*} a		b ≺ _{i*} a	<mark>a</mark> ≺ _{i*} b		<mark>a</mark> ≺ _{i*} b
<i>i</i> * + 1:	b ≺ _{i*+1} a		b ≺ _{i*+1} a	b ≺ _{i*+1} a		a ≺ _{i*+1} b
÷	÷	·	÷	÷	·•.	:
<i>n</i> :	b ≺ _n a		b ≺ _n a	b ≺ _n a		<mark>a</mark> ≺ _n b
<i>F</i> :	b ≺ ⁰ a		b ≺ ^{i*−1} a	<mark>a</mark> ⊰ ^{i*} b		<mark>a</mark> ≺ ⁿ b

Unanimity $\Rightarrow b \prec^0 \mathbf{a}$ for $\prec^0 = F(\pi^0)$, $\mathbf{a} \prec^n b$ for $\prec^n := F(\pi^n)$.

Thus, there must exist a minimal index i^* such that $b \prec^{i^*-1} a$ and $a \prec^{i^*} b$ for $\prec^{i^*-1} := F(\pi^{i^*-1})$ and $\prec^{i^*} = F(\pi^{i^*})$. UNI FREIBURO

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof (ctd.)

	π^0		π^{i^*-1}	π^{i^*}		π^n
1:	b ≺ ₁ a		<mark>a</mark> ≺ ₁ b	<mark>a</mark> ≺ ₁ b		<mark>a</mark> ≺ ₁ b
÷	÷	·	:	÷	·	÷
<i>i</i> * − 1:	<i>b</i> ≺ _{i*−1}		<mark>a</mark> ≺ _{i*−1} b	<mark>a</mark> ≺ _{i*−1} b		a ≺ _{i*−1} b
i*:	b ≺ _{i*} a		b ≺ _{i*} a	<mark>a</mark> ≺ _{i*} b		<mark>a</mark> ≺ _{i*} b
<i>i</i> * + 1:	b ≺ _{i*+1} a		b ≺ _{i*+1} a	b ≺ _{i*+1} a		a ≺ _{i*+1} b
÷	÷	·	÷	÷	·	÷
<i>n</i> :	b		b	b		a ≺ _n b
F:	b ≺ ⁰ a		b ≺ ^{i*−1} a	<mark>a</mark> ⊰ ^{i*} b		<mark>a</mark> ≺ ⁿ b

Unanimity $\Rightarrow b \prec^0 a$ for $\prec^0 = F(\pi^0)$, $a \prec^n b$ for $\prec^n := F(\pi^n)$. Thus, there must exist a minimal index i^* such that $b \prec^{i^*-1} a$ and $a \prec^{i^*} b$ for $\prec^{i^*-1} := F(\pi^{i^*-1})$ and $\prec^{i^*} = F(\pi^{i^*})$. UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof (ctd.)

Show that i^* is a dictator.

Consider two alternatives $c, d \in A$ with $c \neq d$ and show that f all $(\prec_1, \ldots, \prec_n) \in L^n$, $c \prec_{i^*} d$ implies $c \prec d$, where $\prec = F(\prec_1, \ldots, \prec_{i^*}, \ldots, \prec_n)$. Consider $e \notin \{c, d\}$ and construct preference profile $(\prec'_1, \ldots, \prec'_n)$, where:

> for $j < i^*$: $e \prec'_j c \prec'_j d$ or $e \prec'_j d \prec'_j c$ for $j = i^*$: $c \prec'_j e \prec'_j d$ or $d \prec'_j e \prec'_j c$ for $j > i^*$: $c \prec'_j d \prec'_j e$ or $d \prec'_j c \prec'_j e$

depending on whether $c \prec_j d$ or $d \prec_j c$

FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof (ctd.)

Show that i^* is a dictator.

Consider two alternatives $c, d \in A$ with $c \neq d$ and show that for all $(\prec_1, \ldots, \prec_n) \in L^n$, $c \prec_{i^*} d$ implies $c \prec d$, where $\prec = F(\prec_1, \ldots, \prec_{i^*}, \ldots, \prec_n)$.

Consider $e \notin \{c, d\}$ and construct preference profile $(\prec'_1, \ldots, \prec'_n)$, where:

for $j < i^*$: $e \prec'_j c \prec'_j d$ or $e \prec'_j d \prec'_j c$ for $j = i^*$: $c \prec'_j e \prec'_j d$ or $d \prec'_j e \prec'_j c$ for $j > i^*$: $c \prec'_j d \prec'_j e$ or $d \prec'_j c \prec'_j e$

depending on whether $c \prec_j d$ or $d \prec_j c$

FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof (ctd.)

Show that i^* is a dictator.

Consider two alternatives $c, d \in A$ with $c \neq d$ and show that for all $(\prec_1, \ldots, \prec_n) \in L^n$, $c \prec_{i^*} d$ implies $c \prec d$, where $\prec = F(\prec_1, \ldots, \prec_{i^*}, \ldots, \prec_n)$.

Consider $e \notin \{c, d\}$ and construct preference profile $(\prec'_1, \ldots, \prec'_n)$, where:

for $j < i^*$: $e \prec'_j c \prec'_j d$ or $e \prec'_j d \prec'_j c$ for $j = i^*$: $c \prec'_j e \prec'_j d$ or $d \prec'_j e \prec'_j c$ for $j > i^*$: $c \prec'_j d \prec'_j e$ or $d \prec'_j c \prec'_j e$

depending on whether

 $c \prec_j d$ or $d \prec_j c$.

UNI FREIBUR

> Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

June 14th, 2016

. . .

B. Nebel, R. Mattmüller - Game Theory

32 / 61

Proof (ctd.)

Let
$$\prec' = F(\prec'_1, \ldots, \prec'_n).$$

Independence of irrelevant alternatives implies $c \prec' d$ iff $c \prec d$.

For (e, c) we have the same preferences in $\prec'_1, \ldots, \prec'_n$ as for (a, b) in π^{i^*-1} . Pairwise neutrality implies $c \prec' e$. For (e, d) we have the same preferences in $\prec'_1, \ldots, \prec'_n$ as for

(a,b) in π^{i^*} . Pairwise neutrality implies $e \prec' d$.

FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof (ctd.)

Let
$$\prec' = F(\prec'_1, \ldots, \prec'_n).$$

Independence of irrelevant alternatives implies $c \prec' d$ iff $c \prec d$.

	π^{i^*-1}	$(\prec'_i)_{i=1,,n}$	π^{i^*}	$(\prec'_i)_{i=1,\ldots,n}$
1:	<mark>a</mark> ≺ ₁ b	<mark>e</mark> ≺′ ₁ c	<mark>a</mark> ≺ ₁ b	e ≺' ₁ d
<i>i</i> * – 1:	a ≺ _{i*−1} b		$a \prec_{i^*-1} b$	e ≺′ _{i*−1} d
<i>i</i> *:	b ≺ _{i*}	c ≺′ _{i*} e	<mark>a</mark> ≺ _{i*} b	<mark>e</mark> ≺′;∗ d
<i>n</i> :	b ≺ _n	c ≺′ _n e	b ≺ _n a	d ≺′ _n e
<i>F</i> :	b ≺ ^{i*−1} a	c ≺′ e	a ≺ ^{i*} b	<mark>e</mark> ≺′ d

For (e, c) we have the same preferences in $\prec'_1, \ldots, \prec'_n$ as for (a, b) in π^{i^*-1} . Pairwise neutrality implies $c \prec' e$.

For (e,d) we have the same preferences in $\prec'_1, \ldots, \prec'_n$ as for (a,b) in π^{i^*} . Pairwise neutrality implies $e \prec' d$.

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Proof (ctd.)

Let
$$\prec' = F(\prec'_1, \ldots, \prec'_n).$$

Independence of irrelevant alternatives implies $c \prec' d$ iff $c \prec d$.

	π^{i^*-1}	$(\prec'_i)_{i=1,\ldots,n}$	π^{i^*}	$(\prec'_i)_{i=1,\ldots,n}$
1:	<mark>a</mark> ≺ ₁ b	<mark>e</mark> ≺′ ₁ c	<mark>a</mark> ≺ ₁ b	e ≺′ ₁ d
<i>i</i> * – 1:	a ≺ _{i*−1} b	e ≺′ _{i*−1} c	a ≺ _{i*−1} b	e ≺′ _1 d
<i>i</i> *:	b ≺ _{i*}	c ≺′ _{i*} e	<mark>a</mark> ≺ _{i*} b	e ≺′ _{i*} d
<i>n</i> :	b ≺ _n	c ≺′ _n e	b ≺ _n a	d ≺′ _n
<i>F</i> :	<i>b</i> ≺ ^{i*−1} <i>a</i>	c ≺′ e	a ≺ ^{i*} b	e ≺′ d

For (e, c) we have the same preferences in $\prec'_1, \ldots, \prec'_n$ as for (a, b) in π^{i^*-1} . Pairwise neutrality implies $c \prec' e$.

For (e, d) we have the same preferences in $\prec'_1, \ldots, \prec'_n$ as for (a, b) in π^{i^*} . Pairwise neutrality implies $e \prec' d$.

FREIBUR

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

. . .

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Proof (ctd.)

With transitivity, we get $c \prec' d$.

By construction of \prec' and independence of irrelevant alternatives, we get $c \prec d$.

Opposite direction: similar.

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Proof (ctd.)

With transitivity, we get $c \prec' d$.

By construction of \prec' and independence of irrelevant alternatives, we get $c \prec d$.

Opposite direction: similar.

FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Socia Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Proof (ctd.)

With transitivity, we get $c \prec' d$.

By construction of \prec' and independence of irrelevant alternatives, we get $c \prec d$.

Opposite direction: similar.

Remark:

Unanimity and non-dictatorship often satisfied in social welfare functions. Problem usually lies with independence of irrelevant alternatives.

Closely related to possibility of strategic voting: insert "irrelevant" candidate between favorite candidate and main competitor to help favorite candidate (only possible if independence of irrelevant alternatives is violated).

Social Choice Theory

Arrow's Impossibility Theorem

Motivation

Properties of Social Welfare Functions

Main Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation Preliminaries Main Theorem

Some Positive Results

Summary

Gibbard-Satterthwaite Theorem

Motivation:

- Arrow's Impossibility Theorem only applies to social welfare functions.
- Can this be transferred to social choice functions?
- Yes! Intuitive result: Every "reasonable" social choice function is susceptible to manipulation (strategic voting).

FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation Preliminaries Main Theorem

Some Positive Results

Strategic Manipulation and Incentive Compatibility

Definition (Strategic Manipulation, Incentive Compatibility)

A social choice function *f* can be strategically manipulated by voter *i* if there are preferences $\prec_1, \ldots, \prec_i, \ldots, \prec_n, \prec'_i \in L$ such that $a \prec_i b$ for $a = f(\prec_1, \ldots, \prec_i, \ldots, \prec_n)$ and $b = f(\prec_1, \ldots, \prec'_i, \ldots, \prec_n)$.

The function f is called incentive compatible if f cannot be strategically manipulated.

Definition (Monotonicity)

A social choice function is monotone if $f(\prec_1, ..., \prec_i, ..., \prec_n) = a$, $f(\prec_1, ..., \prec'_i, ..., \prec_n) = b$ and $a \neq b$ implies $b \prec_i a$ and $a \prec'_i b$.

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Preliminaries Main Theorem

Some Positive Results

Incentive Compatibility and Monotonicity

Proposition

A social choice function is monotone iff it is incentive compatible.

Proof

Let *f* be monotone. If $f(\prec_1, ..., \prec_i, ..., \prec_n) = a$, $f(\prec_1, ..., \prec'_i, ..., \prec_n) = b$ and $a \neq b$, then also $b \prec_i a$ and $a \prec'_i b$. Then there cannot be any $\prec_1, ..., \prec_n, \prec'_i \in L$ such that $f(\prec_1, ..., \prec_i, ..., \prec_n) = a, f(\prec_1, ..., \prec'_i, ..., \prec_n) = b$ and $a \prec_i b$. Conversely, violated monotonicity implies that there is a possibility for strategic manipulation. UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Preliminaries

Main Theorem

Some Positive Results

Incentive Compatibility and Monotonicity

Proposition

A social choice function is monotone iff it is incentive compatible.

Proof

Let *f* be monotone. If $f(\prec_1, ..., \prec_i, ..., \prec_n) = a$, $f(\prec_1, ..., \prec'_i, ..., \prec_n) = b$ and $a \neq b$, then also $b \prec_i a$ and $a \prec'_i b$. Then there cannot be any $\prec_1, ..., \prec_n, \prec'_i \in L$ such that $f(\prec_1, ..., \prec_i, ..., \prec_n) = a, f(\prec_1, ..., \prec'_i, ..., \prec_n) = b$ and $a \prec_i b$. Conversely, violated monotonicity implies that there is a possibility for strategic manipulation.
> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Preliminaries Main Theorem

Some Positive Results

Incentive Compatibility and Monotonicity

Proposition

A social choice function is monotone iff it is incentive compatible.

Proof

Let *f* be monotone. If $f(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = a$, $f(\prec_1, \ldots, \prec'_i, \ldots, \prec_n) = b$ and $a \neq b$, then also $b \prec_i a$ and $a \prec'_i b$. Then there cannot be any $\prec_1, \ldots, \prec_n, \prec'_i \in L$ such that $f(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = a, f(\prec_1, \ldots, \prec'_i, \ldots, \prec_n) = b$ and $a \prec_i b$. Conversely, violated monotonicity implies that there is a possibility for strategic manipulation. UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Preliminaries Main Theorem

Some Positive Results

Dictatorship in Social Choice Functions

Definition (Dictatorship)

Voter *i* is a dictator in a social choice function *f* if for all $\prec_1, \ldots, \prec_i, \ldots, \prec_n \in L$, $f(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = a$, where *a* is the unique candidate with $b \prec_i a$ for all $b \in A$ with $b \neq a$.

The function f is a dictatorship if there is a dictator in f.

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Preliminaries Main Theorem

Some Positive Results

Reduction to Arrow's Theorem

Approach:

- We prove the result by Gibbard and Satterthwaite using Arrow's Theorem.
- To that end, construct social welfare function from social choice function.

Notation:

Let $S \subseteq A$ and $\prec \in L$. By \prec^S we denote the order obtained by moving all elements from *S* "to the top" in \prec , while preserving the relative orderings of the elements in *S* and of those in $A \setminus S$. More formally:

• for
$$a, b \in S$$
: $a \prec^S b$ iff $a \prec b$,

for
$$a, b \notin S$$
: $a \prec^S b$ iff $a \prec b$,

• for $a \notin S$, $b \in S$: $a \prec^S b$.

These conditions uniquely define \prec^{S} .

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Preliminaries Main Theorem

Some Positive Results

Top-Preference Lemma

Lemma (Top Preference)

Let *f* be an incentive compatible and surjective social choice function. Then for all $\prec_1, \ldots, \prec_n \in L$ and all $\emptyset \neq S \subseteq A$, we have $f(\prec_1^S, \ldots, \prec_n^S) \in S$.

Proof

Let $a \in S$.

Since *f* is surjective, there are $\prec'_1, \ldots, \prec'_n \in L$ such that $f(\prec'_1, \ldots, \prec'_n) = a$.

Now, sequentially, for i = 1, ..., n, change the relation \prec'_i to \prec^S_i At no point during this sequence of changes will *f* output any candidate $b \notin S$, because *f* is monotone. UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Dreliminerie

Main Theorem

Some Positive Results

Top-Preference Lemma

Lemma (Top Preference)

Let *f* be an incentive compatible and surjective social choice function. Then for all $\prec_1, \ldots, \prec_n \in L$ and all $\emptyset \neq S \subseteq A$, we have $f(\prec_1^S, \ldots, \prec_n^S) \in S$.

Proof

Let $a \in S$.

Since *f* is surjective, there are $\prec'_1, \ldots, \prec'_n \in L$ such that $f(\prec'_1, \ldots, \prec'_n) = a$.

Now, sequentially, for i = 1, ..., n, change the relation \prec'_i to \prec^S_i . At no point during this sequence of changes will *f* output any candidate $b \notin S$, because *f* is monotone. Social Choice

> Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Preliminarie

Main Theorem

Some Positive Results

Extension of a Social Choice Function

Definition (Extension of a Social Choice Function)

The function $F : L^n \to L$ that extends the social choice function f is defined as $F(\prec_1, \ldots, \prec_n) = \prec$, where $a \prec b$ iff $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}}) = b$ for all $a, b \in A, a \neq b$.

Lemma

If f is an incentive compatible and surjective social choice function, then its extension F is a social welfare function.

Proof

We show that \prec is a strict linear order, i.e., asymmetric, total and transitive.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Droliminario

Main Theorem

Some Positive Results

Summary

June 14th, 2016

. . .

Extension of a Social Choice Function

Proof (ctd.)

- Asymmetry and Totality: Because of the Top-Preference Lemma, $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}})$ is either *a* or *b*, i.e., *a* ≺ *b* or *b* ≺ *a*, but not both (asymmetry) and not neither (totality).
- Transitivity: We may already assume totality. Suppose that \prec is not transitive, i.e., $a \prec b$ and $b \prec c$, but not $a \prec c$, for some a, b and c. Because of totality, $c \prec a$. Consider $S = \{a, b, c\}$ and WLOG $f(\prec_1^{\{a, b, c\}}, \ldots, \prec_n^{\{a, b, c\}}) = a$. Due to monotonicity of f, we get $f(\prec_1^{\{a, b\}}, \ldots, \prec_n^{\{a, b\}}) = a$ by successively changing $\prec_i^{\{a, b, c\}}$ to $\prec_i^{\{a, b\}}$. Thus, we get $b \prec a$ in contradiction to our assumption.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Dreliminaria

Main Theorem

Some Positive Results

Extension of a Social Choice Function

Proof (ctd.)

- Asymmetry and Totality: Because of the Top-Preference Lemma, $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}})$ is either *a* or *b*, i.e., $a \prec b$ or $b \prec a$, but not both (asymmetry) and not neither (totality).
- Transitivity: We may already assume totality. Suppose that \prec is not transitive, i.e., $a \prec b$ and $b \prec c$, but not $a \prec c$, for some a, b and c. Because of totality, $c \prec a$. Consider $S = \{a, b, c\}$ and WLOG $f(\prec_1^{\{a, b, c\}}, \ldots, \prec_n^{\{a, b, c\}}) = a$. Due to monotonicity of f, we get $f(\prec_1^{\{a, b\}}, \ldots, \prec_n^{\{a, b\}}) = a$ by successively changing $\prec_i^{\{a, b, c\}}$ to $\prec_i^{\{a, b\}}$. Thus, we get $b \prec a$ in contradiction to our assumption.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Notivation

Main Theorem

Some Positive Results

Extension Lemma

Lemma (Extension Lemma)

If f is an incentive compatible, surjective, and non-dictatorial social choice function, then its extension F is a social welfare function that satisfies unanimity, independence of irrelevant alternatives, and non-dictatorship.

Proof

We already know that F is a social welfare function and still have to show unanimity, independence of irrelevant alternatives, and non-dictatorship.

■ Unanimity: Let $a \prec_i b$ for all *i*. Then $(\prec_i^{\{a,b\}})^{\{b\}} = \prec_i^{\{a,b\}}$. Because of the Top-Preference Lemma, $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}}) = b$, hence $a \prec b$.

Independence of irrelevant alternatives: ...

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Main Theorem

Some Positive Results

Extension Lemma

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Main Theorem

Some Positive Results

Summary

Proof (ctd.)

- Independence of irrelevant alternatives: If for all *i*, $a \prec_i b$ iff $a \prec'_i b$, then $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}}) = f(\prec_1'^{\{a,b\}}, \ldots, \prec_n'^{\{a,b\}})$ must hold, since due to monotonicity the result does not change when $\prec_i^{\{a,b\}}$ is successively replaced by $\prec_i'^{\{a,b\}}$.
- Non-dictatorship: Obvious.

Theorem (Gibbard-Satterthwaite)

If f is an incentive compatible and surjective social choice function with three or more alternatives, then f is a dictatorship.

The purpose of mechanism design is to alleviate the negative results of Arrow and Gibbard and Satterthwaite by changing the underlying model. The two usually investigated modifications are:

- Introduction of money
- Restriction of admissible preference relations

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation

Main Theorem

Some Positive Results

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Some Positive Results

We had some negative results on social choice and welfare functions so far: Arrow, Gibbard-Satterthwaite.

Question: Are there also positive results for special cases?

First special case: Only two alternatives.

Intuition: With only two alternatives, no point in misrepresenting preferences.

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Axioms for voting systems:

- Neutrality: "Names" of candidates/alternatives should not be relevant.
- Anonymity: "Names" of voters should not be relevant.
- Monotonicity: If a candidate wins, he should still win if one voter ranks him higher.

Theorem (May, 1958)

A voting method for two alternatives satisfies anonymity, neutrality, and monotonicity if and only if it is the plurality method.

Proof.

⇐: Obvious.

 \Rightarrow : For simplicity, we assume that the number of voters is odd.

Anonymity and neutrality imply that only the numbers of votes for the candidates matter.

Let *A* be the set of voters that prefer candidate *a*, and let *B* be the set of voters that prefer candidate *b*. Consider a vote with |A| = |B| + 1.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Theorem (May, 1958)

A voting method for two alternatives satisfies anonymity, neutrality, and monotonicity if and only if it is the plurality method.

Proof.

Contraction Contractic Contracti

 \Rightarrow : For simplicity, we assume that the number of voters is odd.

Anonymity and neutrality imply that only the numbers of votes for the candidates matter.

Let *A* be the set of voters that prefer candidate *a*, and let *B* be the set of voters that prefer candidate *b*. Consider a vote with |A| = |B| + 1.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Theorem (May, 1958)

A voting method for two alternatives satisfies anonymity, neutrality, and monotonicity if and only if it is the plurality method.

Proof.

Contraction Contractic Contracti

 \Rightarrow : For simplicity, we assume that the number of voters is odd.

Anonymity and neutrality imply that only the numbers of votes for the candidates matter.

Let *A* be the set of voters that prefer candidate *a*, and let *B* be the set of voters that prefer candidate *b*. Consider a vote with |A| = |B| + 1.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Theorem (May, 1958)

A voting method for two alternatives satisfies anonymity, neutrality, and monotonicity if and only if it is the plurality method.

Proof.

Contraction Contractic Contracti

 \Rightarrow : For simplicity, we assume that the number of voters is odd.

Anonymity and neutrality imply that only the numbers of votes for the candidates matter.

Let *A* be the set of voters that prefer candidate *a*, and let *B* be the set of voters that prefer candidate *b*. Consider a vote with |A| = |B| + 1.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURO

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
 - Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate b wins. Assume that one voter for a changes his preference to b. Then |A'| + 1 = |B'|. By monotonicity, b must still win. This is completely symmetric to the original vote. Hence, by neutrality, a should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate b wins. Assume that one voter for a changes his preference to b. Then |A'| + 1 = |B'|. By monotonicity, b must still win. This is completely symmetric to the original vote. Hence, by neutrality, a should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

May's Theorem

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBURO

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

May's Theorem

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

UNI FREIBUF

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Summary

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

May's Theorem

Proof (ctd.)

- Case 1: Candidate *a* wins. Then by monotonicity, *a* still wins whenever |A| > |B|. With neutrality, we also get that *b* wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate *b* wins. Assume that one voter for *a* changes his preference to *b*. Then |A'| + 1 = |B'|. By monotonicity, *b* must still win. This is completely symmetric to the original vote. Hence, by neutrality, *a* should win. This is a contradiction, implying that case 2 cannot occur.

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

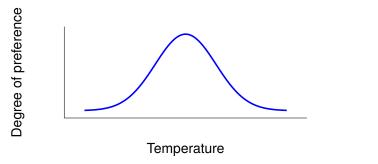
Some Positive Results

May's Theorem

Single-Peaked Preferences

The results by Arrow and Gibbard-Satterthwaite only apply is there are no restrictions on the preference orders.

Second special case: Let us now consider some special cases such as temperature or volume settings.



Social

IRG

Arrow's Impossibility Theorem

Theory

Gibbard-Satterthwaite Theorem

Some Positive Results

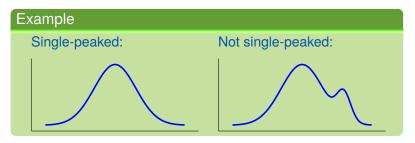
May's Theorem

Single-Peaked Preferences

Definition (Single-peaked preference)

A preference relation \prec_i over the interval [0, 1] is called a single-peaked preference relation if there exists a value $p_i \in [0, 1]$ such that for all $x \in [0, 1] \setminus p_i$ and for all $\lambda \in [0, 1)$,

$$x \prec_i \lambda x + (1-\lambda)p_i$$



Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

First idea: Use arithmetic mean of all peak values.

Example

Preferred room temperatures:

- Voter 1: 10°C
- Voter 2: 20°C
- Voter 3: 21 °C

Social Choice Theory

Arrow's Impossibility Theorem

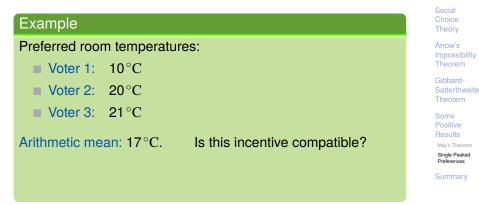
Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

First idea: Use arithmetic mean of all peak values.



BURG

First idea: Use arithmetic mean of all peak values.

Example

Preferred room temperatures:

Voter 1: 10°C

Voter 2: 20°C

Voter 3: 21 °C

Arithmetic mean: 17° C. Is this incentive compatible? No! Voter 1 can misrepresent his peak value as, e.g., -11° C. Then the mean is 10° C, his favorite value!

UNI FREIBURG

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

First idea: Use arithmetic mean of all peak values.

Example

Preferred room temperatures:

Voter 1: 10°C

Voter 2: 20°C

Voter 3: 21 °C

Arithmetic mean: 17° C. Is this incentive compatible? No! Voter 1 can misrepresent his peak value as, e.g., -11° C.

Then the mean is 10°C, his favorite value!

Question: What is a good way to design incentive compatible social choice functions for this setting?

June 14th, 2016

> Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theoren

Single-Peaked Preferences

Definition (Median rule)

Let p_1, \ldots, p_n be the peaks for the preferences \prec_1, \ldots, \prec_n ordered such that we have $p_1 \le p_2 \le \cdots \le p_n$. Then the median rule is the social choice function *f* with

$$f(\prec_1,\ldots,\prec_n)=p_{\lceil n/2\rceil}.$$

Theorem

The median rule is surjective, incentive compatible, anonymous, and non-dictatorial.

UNI FREIBUR

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

UNI FREIBURG

Proof.

 Surjective: Obvious, because the median rule satisfies unanimity.

- Incentive compatible: Assume that p_i is below the median. Then reporting a lower value does not change the median (→ does not help), and reporting a higher value can only increase the median (→ does not help, either). Similarly, if p_i is above the median.
- Anonymous: Is implicit in the rule.
- Non-dictatorial: Follows from anonymity.

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

UNI FREIBURG

Proof.

- Surjective: Obvious, because the median rule satisfies unanimity.
- Incentive compatible: Assume that *p_i* is below the median. Then reporting a lower value does not change the median (→ does not help), and reporting a higher value can only increase the median (→ does not help, either). Similarly, if *p_i* is above the median.
- Anonymous: Is implicit in the rule.
- Non-dictatorial: Follows from anonymity.

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

UNI FREIBURG

Proof.

- Surjective: Obvious, because the median rule satisfies unanimity.
- Incentive compatible: Assume that *p_i* is below the median. Then reporting a lower value does not change the median (→ does not help), and reporting a higher value can only increase the median (→ does not help, either). Similarly, if *p_i* is above the median.
- Anonymous: Is implicit in the rule.

Non-dictatorial: Follows from anonymity.

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

UNI FREIBURG

Proof.

- Surjective: Obvious, because the median rule satisfies unanimity.
- Incentive compatible: Assume that *p_i* is below the median. Then reporting a lower value does not change the median (→ does not help), and reporting a higher value can only increase the median (→ does not help, either). Similarly, if *p_i* is above the median.
- Anonymous: Is implicit in the rule.
- Non-dictatorial: Follows from anonymity.

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem

Single-Peaked Preferences

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Summary

- Multitude of possible social welfare functions (plurality voting with or without runoff, instant runoff voting, Borda count, Schulze method, ...).
- All social welfare functions for more than two alternatives suffer from Arrow's Impossibility Theorem.
- Typical handling of this issue: Use unanimous, non-dictatorial social welfare functions – violate independence of irrelevant alternatives.
- Thus: Strategic voting inevitable.
- The same holds for social choice functions (Gibbard-Satterthwaite Theorem).

Social Choice Theory

2

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results