Game Theory

8. Social Choice Theory

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

June 14th, 2016

Social Choice Theory

Motivation: Aggregation of individual preferences

Examples:

- political elections
- council decisions
- Eurovision Song Contest

Question: If voters' preferences are private, then how to implement aggregation rules such that voters vote truthfully (no "strategic voting")?

FREB

Choice Theory

> Introduction Social Choice

Social Choice Functions Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

1 Social Choice Theory

Social Choice Functions

Condorcet Methods

Introduction

Social Choice Theory

> Introduction Social Choice Functions

Functions Condorcet Methods

Arrow's Impossibility

Gibbard-Satterthwaite

> Some Positive Results

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

3 / 62

Social Choice Theory

Definition (Social Welfare and Social Choice Function)

Let A be a set of alternatives (candidates) and L be the set of all linear orders on A. For n voters, a function

 $F:L^n\to L$

is called a social welfare function. A function

 $f:L^n\to A$

is called a social choice function.

Notation: Linear orders $\prec \in L$ express preference relations.

 $a \prec_i b$: voter *i* prefers candidate *b* over candidate *a*. $a \prec b$: candidate *b* socially preferred over candidate *a*.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

Social Choice Theory

> Introduction Social Choice

Social Choice Functions Condorcet Methods

Arrow's Impossibility

Gibbard-Satterthwaite Theorem

> Some Positive Results

Summary

Social Choice Functions

Examples

- Plurality voting (aka first-past-the-post or winner-takes-all):
 - only top preferences taken into account
 - candidate with most top preferences wins

Drawback: Wasted votes, compromising, winner only preferred by minority

- Plurality voting with runoff:
 - First round: two candidates with most top votes proceed to second round (unless absolute majority)
 - Second round: runoff

Drawback: still, tactical voting and strategic nomination possible.

Theory

UNI FREIBURG

Introduction Social Choice Functions

Arrow's

Some Results

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

6 / 62

Social Choice Functions

Examples

Instant runoff voting:

- each voter submits his preference order
- iteratively candidates with fewest top preferences are eliminated until one candidate has absolute majority

Drawback: Tactical voting still possible.

Borda count:

- each voter submits his preference order over the m candidates
- \blacksquare if a candidate is in position *j* of a voter's list, he gets m-jpoints from that voter
- points from all voters are added
- candidate with most points wins

Drawback: Tactical voting still possible ("Voting opponent down").

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

7 / 62

Social Choice Functions

Examples

Condorcet winner:

- each voter submits his preference order
- perform pairwise comparisons between candidates
- if one candidate wins all his pairwise comparisons, he is the Condorcet winner

Drawback: Condorcet winner does not always exist.

Theory

Introduction Social Choice

Functions

Arrow's Impossibility

Some Results

Social Choice Functions

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	С	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

- Plurality voting: candidate e wins (8 votes)
- Plurality voting with runoff:
 - first round: candidates e (8 votes) and a (6 votes) proceed
 - \blacksquare second round: candidate a (6+4+3+1=14 votes) beats candidate e (8 + 1 = 9 votes)

B. Nebel, R. Mattmüller - Game Theory

Social Theory

Social Choice

Functions

Arrow's

Some Positive

Results Summary

UNI FREIBURG

Theory

Social Choice

Some Results

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

8 / 62

June 14th, 2016

Social Choice Functions

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	С	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

Instant runoff voting:

First elimination: d Second elimination: b Third elimination: a

Now c has absolute majority and wins.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

BURG NE NE

Theory

Introduction Social Choice Functions

Arrow's Theorem

Gibbard-

Some Results

Summary

Social Choice Functions

Examples

June 14th, 2016

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
1st	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	С	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а

■ Condorcet winner: Ex.: a \prec_i b 16 times, b \prec_i a 7 times

	а	b	С	d	е	
а	_	0	0	0	1	
b	1	_	1	1	1	\leftarrow candidate b wins.
С	1	0	_	1	1	
d	1	0	0	_	0	
е	0	0	0	1	_	

B. Nebel, R. Mattmüller - Game Theory

UNI FREIBURG

10 / 62

Theory

Introduction Social Choice Functions

Arrow's Impossibility

Some Results

Summary

12 / 62

Social Choice Functions

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1	
1st	е	а	b	С	d	d	4 points
2nd	d	b	С	b	С	С	3 points
3rd	b	С	d	d	а	b	2 points
4th	С	е	а	а	b	е	1 point
5th	а	d	е	е	е	а	0 points

■ Borda count:

 \blacksquare Cand. a: $8 \cdot 0 + 6 \cdot 4 + 4 \cdot 1 + 3 \cdot 1 + 1 \cdot 2 + 1 \cdot 0 = 33$ pts

 \blacksquare Cand. b: $8 \cdot 2 + 6 \cdot 3 + 4 \cdot 4 + 3 \cdot 3 + 1 \cdot 1 + 1 \cdot 2 = 62$ pts

■ Cand. c: $8 \cdot 1 + 6 \cdot 2 + 4 \cdot 3 + 3 \cdot 4 + 1 \cdot 3 + 1 \cdot 3 = 50$ pts

 \blacksquare Cand. d: $8 \cdot 3 + 6 \cdot 0 + 4 \cdot 2 + 3 \cdot 2 + 1 \cdot 4 + 1 \cdot 4 = 46$ pts

■ Cand. e: $8 \cdot 4 + 6 \cdot 1 + 4 \cdot 0 + 3 \cdot 0 + 1 \cdot 0 + 1 \cdot 1 = 39$ pts

B. Nebel, R. Mattmüller - Game Theory

Social Choice Functions

Examples

23 voters, candidates a, b, c, d, e.

# voters	8	6	4	3	1	1
	е	а	b	С	d	d
2nd	d	b	С	b	С	С
3rd	b	С	d	d	а	b
4th	С	е	а	а	b	е
5th	а	d	е	е	е	а
3rd 4th	d b c	b c	d a	b d a	c a b	c b e

■ Plurality voting: candidate e wins.

Plurality voting with runoff: candidate a wins.

■ Instant runoff voting: candidate c wins.

Borda count / Condorcet winner: candidate b wins.

■ Different winners for different voting systems.

■ Which voting system to prefer? Can even strategically choose voting system!

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

Social Theory

Social Choice Functions

Arrow's

Satterthwaite

Some Positive Results

Summary

11 / 62

Social Theory

UNI FREIBURG

Social Choice Functions Condorcet Methods

Impossibility

Some

Results

Summary

Condorcet Paradox

Why Condorcet Winner not Always Exists

$$a \prec_1 b \prec_1 c$$

$$b \prec_2 c \prec_2 a$$

$$c \prec_3 a \prec_3 b$$

Then we have cyclical preferences.

 $a \prec b, \, b \prec c, \, c \prec a$: violates transitivity of linear order consistent with these preferences.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

14 / 62

BURG

Theory

Introduction Social Choice

Condorcet

Methods

Arrow's

Some

Positive Results

Summary

Condorcet Methods

Definition

A Condorcet method return a Condorcet winner, if one exists.

One particular Condorcet method: the Schulze method.

Relatively new: Proposed in 1997

Already many users: Debian, Ubuntu, Pirate Party, ...

Social Choice Theory

Introduction Social Choice Functions

Functions Condorcet

Arrow's Impossibility Theorem

Gibbard-Satterthwaite

> Some Positive Results

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

15 / 62

Schulze Method

Notation: d(X, Y) = number of pairwise comparisons won by X against Y

Definition

For candidates X and Y, there exists a path C_1, \ldots, C_n between X and Y of strength z if

- $C_1 = X$
- $C_n = Y$
- $d(C_i, C_{i+1}) > d(C_{i+1}, C_i)$ for all i = 1, ..., n-1, and
- $d(C_i, C_{i+1}) \ge z$ for all i = 1, ..., n-1 and there exists j = 1, ..., n-1 s.t. $d(C_i, C_{i+1}) = z$

Example: path of strength 3.

$$a \xrightarrow{8} b \xrightarrow{5} c \xrightarrow{3} d$$

June 14th, 2016

B. Nebel, R. Mattmüller – Game Theory

Some Positive Results

Theory

Introduction Social Choice

Condorcet

Impossibility

Methods

Summary

16 / 62

Schulze Method

Definition

Let p(X, Y) be the maximal value z such that there exists a path of strength z from X to Y, and p(X, Y) = 0 if no such path exists.

Then, the Schulze winner is the Condorcet winner, if it exists. Otherwise, a potential winner is a candidate a such that $p(a,X) \ge p(X,a)$ for all $X \ne a$.

Tie-Breaking is used between potential winners.

Functions
Condorcet
Methods
Arrow's

Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Schulze Method

Example

# voters	3	2	2	2
1st	а	d	d	С
2nd	b	а	b	b
3rd	С	b	С	d
4th	d	С	а	а

Is there a Condorcet winner?

	а	b	С	d
а	_	1	1	0
b	0	_	1	1
С	0	0	_	1
d	1	0	0	–

 $\rightsquigarrow No!$

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

FREIBURG

Social Choice Theory

> Introduction Social Choice

Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwait

Some Positive Results

Summary

18 / 62

Schulze Method

Example

Weights d(X, Y):

	3.110 0 (11) 1 /1								
	а	b	С	d					
а	_	5	5	3					
b	4	_	7	5					
С	4	2	_	5					
d	6	4	4	_					

As a graph:

	а	b	С	d
а	_	5	5	5
b	5	_	7	5
С	5	5	_	5
d	6	5	5	–

Path strengths p(X, Y):

Social Choice Theory

Introduction Social Choice Functions

> Condorcet Methods

Arrow's Impossibility Theorem

Gibbard-Satterthwaite

> Some Positive Results

> > Summary

Potential winners: b and d.

ne 14th, 2016 B. Nebel, R. Mattmüller – Game Theory

19 / 62

Schulze Method

Why Use the Schulze Method?

According to Wikipedia

(http://en.wikipedia.org/wiki/Schulze_method), the method satisfies a large number of desirable criteria:

Unrestricted domain, non-imposition, non-dictatorship, Pareto criterion, monotonicity criterion, majority criterion, majority loser criterion, Condorcet criterion, Condorcet loser criterion, Schwartz criterion, Smith criterion, independence of Smith-dominated alternatives, mutual majority criterion, independence of clones, reversal symmetry, mono-append, mono-add-plump, resolvability criterion, polynomial runtime, prudence, MinMax sets, Woodall's plurality criterion if winning votes are used for d[X,Y], symmetric-completion if margins are used for d[X,Y].

UNI FREIBURG

Choice

Introduction
Social Choice
Functions
Condorcet
Methods

Arrow's Impossibility

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

2 Arrow's Impossibility Theorem

- Motivation
- Properties of Social Welfare Functions
- Main Theorem

Social Choice Theory

Arrow's Impossibility Theorem

> Motivation Properties of Soc

Welfare Functions
Main Theorem

Gibbard-Satterthwaite Theorem

> Some Positive Results

Summary

June 14th, 2016 B. Nebel, R. Mattmüller – Game Theory

20 / 62

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

Arrow's Impossibility Theorem

Motivation

Motivation: It appears as if all considered voting systems encourage strategic voting.

Question: Can this be avoided or is it a fundamental problem?

Answer (simplified): It is a fundamental problem!

Arrow's

Main Theorem

Satterthwaii

Some Positive

Results

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

23 / 62

Properties of Social Welfare Functions

UNI FREIBURG

Desirable properties of social welfare functions:

Definition (Unanimity)

A social welfare function satisfies

- total unanimity if for all $\prec \in L$, $F(\prec, ..., \prec) = \prec$.
- **partial unanimity** if for all $\prec_1, \prec_2, \ldots, \prec_n \in L$, $a, b \in A$,

$$a \prec_i b$$
 for each $i = 1, ..., n \implies a \prec b$

where $\prec := F(\prec_1, \ldots, \prec_n)$.

Satterthwa

Some Positive

Remark

Partial unanimity implies total unanimity, but not vice versa.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

24 / 62

Properties of Social Welfare Functions

Desirable properties of social welfare functions:

Definition (Non-Dictatorship)

A voter i is called a dictator for F, if $F(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = \prec_i$ for all orders $\prec_1, \ldots, \prec_n \in L$.

F is called non-dictatorial if there is no dictator for F.

Definition (Independence of Irrelevant Alternatives, IIA)

F satisfies IIA if for all alternatives a, b the social preference between a and b depends only on the preferences of the voters between a and b.

Formally, for all
$$(\prec_1, \ldots, \prec_n)$$
, $(\prec'_1, \ldots, \prec'_n) \in L^n$, $\prec := F(\prec_1, \ldots, \prec_n)$, and $\prec' := F(\prec'_1, \ldots, \prec'_n)$, $a \prec_i b$ iff $a \prec'_i b$, for each $i = 1, \ldots, n \implies a \prec b$ iff $a \prec' b$.

Arrow's Impossibility Theorem

> Properties of Soci Welfare Functions

Satterthwait Theorem

Positive Results

Properties of Social Welfare Functions

Lemma

Total unanimity and independence of irrelevant alternatives together imply partial unanimity.

Proof

Consider any $\prec_1, \ldots, \prec_n \in L$ with $a \prec_i b$ for all voters i.

To show: $a \prec b$ (with $\prec := F(\prec_1, \ldots, \prec_n)$).

Define $\prec'_1, \ldots, \prec'_n$ with $\prec'_i := \prec_1$ for each voter *i*.

By total unanimity, $\prec' := F(\prec'_1, \ldots, \prec'_n) = F(\prec_1, \ldots, \prec_1) = \prec_1$.

Hence, we have $a \prec' b$.

Moreover, $a \prec_i b$ iff $a \prec'_i b$, for all voters i.

By IIA, it follows $a \prec b$ iff $a \prec' b$.

From $a \prec' b$ we conclude that $a \prec b$ must hold.

B. Nebel, R. Mattmüller - Game Theory

Satterthwa

Pairwise Neutrality

Lemma (pairwise neutrality)

Let *F* be a social welfare function satisfying (total or partial) unanimity and independence of irrelevant alternatives. Let $(\prec_1, \ldots, \prec_n)$ and $(\prec'_1, \ldots, \prec'_n)$ be two preference profiles, $\prec := F(\prec_1, \ldots, \prec_n)$ and $\prec' := F(\prec'_1, \ldots, \prec'_n)$. Then.

 $a \prec_i b$ iff $c \prec_i' d$ for each $i = 1, ..., n \implies a \prec b$ iff $c \prec_i' d$.

Arrow's

Main Theorem

Some Positive Results

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

27 / 62

Pairwise Neutrality

Social

Satterthwa

Theorem

Some

Positive

Results

Proof

Wlog., $a \prec b$ (otherwise, rename a and b) and $c \neq d$ $c \neq b$ (otherwise, rename a and c as well as b and d). Construct a new preference profile $(\prec_1'', \ldots, \prec_n'')$, where $c \prec_i'' a$ (unless c = a) and $b \prec_i'' d$ (unless b = d) for all i = 1, ..., n, whereas the order of the pairs (a,b) is copied from \prec_i and the order of the pairs (c,d) is taken from \prec'_i .

By unanimity, we get $c \prec'' a$ and $b \prec'' d (\prec'' := F(\prec''_1, \ldots, \prec''_n))$. Because of IIA. we have $a \prec'' b$. By transitivity, we obtain $c \prec'' d$.

With IIA, it follows $c \prec' d$.

The proof for the opposite direction is similar.

Turns out the proof [Nisan 2007] is incomplete [Nipkow 2009].

B. Nebel, R. Mattmüller - Game Theory

The missed case

29 / 62

Proof

Let us assume $a \prec b$ and a = d and b = c. I.e., we want to show: $a \prec_i b$ iff $b \prec'_i a$ for each $i \implies a \prec b$ iff $b \prec' a$. Pick c and create \prec''_i from \prec_i by moving c directly below b, i.e., $a \prec_i b$ iff $a \prec_i'' c$. This implies $a \prec b$ iff $a \prec'' c$ (by the previous part). Construct \prec_i''' from \prec_i'' by moving b directly below a. Construct $\prec_i^{\prime\prime\prime\prime}$ from $\prec_i^{\prime\prime\prime}$ by moving a directly below c. It follows that $a \prec'' c$ iff $b \prec''' c$ and $b \prec''' c$ iff $b \prec'''' a$. Comparing \prec'''' with \prec , we notice: $a \prec_i b$ iff $b \prec_i'''' a$, hence $a \prec_i' b$ iff $a \prec_i'''' b$. By IIA, it follows, $a \prec' b$ iff $a \prec'''' b$, yielding $a \prec b$ iff $b \prec' a$ as desired.

Arrow's Impossibility Theorem

Motivation

Welfare Function Main Theorem

Satterthwait Theorem

Some Positive Results

Arrow's Impossibility Theorem

Arrow's Impossibility Theorem

Every social welfare function over more than two alternatives that satisfies unanimity and independence of irrelevant alternatives is necessarily dictatorial.

Proof

We assume unanimity and independence of irrelevant alternatives.

Consider two elements $a, b \in A$ mit $a \neq b$ and construct a sequence $(\pi^i)_{i=0,\dots,n}$ of preference profiles such that in π^i exactly the first *i* voters prefer *b* to a, i.e., $a \prec_i b$ iff $j \leq i$:

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

Social

Satterthwa Theorem

Arrow's Impossibility Theorem

Theory

Arrow's

Impossibility

Satterthwait

Some Positive

Results

Proof (ctd.)

	π^0		π^{i^*-1}	π^{i^*}		π^n
1:	<i>b</i> ≺ ₁ <i>a</i>		a ≺ ₁ b	<i>a</i> ≺ ₁ <i>b</i>		a ≺ ₁ b
÷	:	٠.	:	:	٠	:
$i^* - 1$:	$b \prec_{i^*-1} a$		$a \prec_{i^*-1} b$	$a \prec_{i^*-1} b$		$a \prec_{i^*-1} b$
<i>i</i> *:	b		$b \prec_{i^*} a$	$a \prec_{i^*} b$		a ≺ _{i*} b
<i>i</i> * + 1:	<i>b</i> ≺ _{<i>i</i>*+1} <i>a</i>		<i>b</i> ≺ _{<i>i</i>*+1} <i>a</i>	<i>b</i> ≺ _{<i>i</i>*+1} <i>a</i>		$a \prec_{i^*+1} b$
÷	:	٠.,	•	•	٠	:
n:	b ≺ _n a		$b \prec_n a$	b ≺ _n a		$a \prec_n b$
F:	$b \prec^0 a$		$b \prec^{i^*-1} a$	a ≺ ^{i*} b		$a \prec^n b$

Unanimity $\Rightarrow b \prec^0 \mathbf{a}$ for $\prec^0 = F(\pi^0)$, $\mathbf{a} \prec^n b$ for $\prec^n := F(\pi^n)$.

Thus, there must exist a minimal index i^* such that $b \prec^{i^*-1} a$ and $a \prec^{i^*} b$ for $\prec^{i^*-1} := F(\pi^{i^*-1})$ and $\prec^{i^*} = F(\pi^{i^*})$.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

31 / 62

Arrow's Impossibility Theorem

Social

Satterthwa

Positive

Proof (ctd.)

Show that i^* is a dictator.

Consider two alternatives $c, d \in A$ with $c \neq d$ and show that for all $(\prec_1, \ldots, \prec_n) \in L^n$, $c \prec_{i^*} d$ implies $c \prec d$, where $\prec = F(\prec_1, \ldots, \prec_{i^*}, \ldots, \prec_n).$

Consider $e \notin \{c,d\}$ and construct preference profile $(\prec'_1,\ldots,\prec'_n)$, where:

for $j < i^*$: $e \prec_j' c \prec_j' d$ or $e \prec_j' d \prec_j' c$

for $j = i^*$: $c \prec_j' e \prec_j' d$ or $d \prec_j' e \prec_j' c$

for $j > i^*$: $c \prec'_j d \prec'_j e$ or $d \prec'_j c \prec'_j e$

depending on whether $c \prec_i d$ or $d \prec_i c$.

June 14th, 2016 B. Nebel, R. Mattmüller - Game Theory

Arrow's Impossibility Theorem

Proof (ctd.)

Let $\prec' = F(\prec'_1, \ldots, \prec'_n)$.

Independence of irrelevant alternatives implies $c \prec' d$ iff $c \prec d$.

	π^{i^*-1}	$(\prec_i')_{i=1,,n}$	π^{i^*}	$(\prec_i')_{i=1,,n}$
1:	$a \prec_1 b$	<i>e</i> ≺′ ₁ <i>c</i>	<i>a</i> ≺ ₁ <i>b</i>	<i>e</i> ≺′ ₁ <i>d</i>
<i>i</i> * − 1:	$a \prec_{i^*-1} b$	$e \prec'_{i^*-1} c$	$a \prec_{i^*-1} b$	$e \prec'_{i^*-1} d$
<i>i</i> *:	$b \prec_{i^*} a$	$c \prec'_{i^*} e$	<i>a</i> ≺ _{i*} <i>b</i>	$e \prec'_{i^*} d$
n:	<i>b</i> ≺ _n <i>a</i>	$c \prec'_n e$	<i>b</i> ≺ _n <i>a</i>	$d \prec'_n e$
F:	$b \prec^{i^*-1} a$	<i>c</i> ≺′ <i>e</i>	a ≺ ^{i*} b	<i>e</i> ≺′ <i>d</i>

For (e,c) we have the same preferences in \prec'_1,\ldots,\prec'_n as for (a,b) in π^{i^*-1} . Pairwise neutrality implies $c \prec e$.

For (e,d) we have the same preferences in \prec_1,\ldots,\prec_n' as for (a,b) in π^{i^*} . Pairwise neutrality implies $e \prec' d$.

June 14th, 2016 B. Nebel, R. Mattmüller - Game Theory Arrow's

Motivation

Impossibility Theorem

Welfare Function

Satterthwait

Positive Results

Summary

33 / 62

Arrow's Impossibility Theorem

Proof (ctd.)

With transitivity, we get $c \prec' d$.

By construction of \prec' and independence of irrelevant alternatives, we get $c \prec d$.

Opposite direction: similar.

Satterthwai

Theorem

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

34 / 62

Arrow's Impossibility Theorem

Remark:

Unanimity and non-dictatorship often satisfied in social welfare functions. Problem usually lies with independence of irrelevant alternatives.

Closely related to possibility of strategic voting: insert "irrelevant" candidate between favorite candidate and main competitor to help favorite candidate (only possible if independence of irrelevant alternatives is violated).

Social Choice Theory

Arrow's Impossibility

Theorem

Properties of S

Welfare Function: Main Theorem

Satterthwaite Theorem

Some Positive Results

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

35 / 62

3 Gibbard-Satterthwaite Theorem

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite

Theorem

Motivation

Preliminaries

Main Theorem

Some Positive Results

Cummon

June 14th, 2016

Motivation

Preliminaries

Main Theorem

B. Nebel, R. Mattmüller - Game Theory

37 / 62

Gibbard-Satterthwaite Theorem

38 / 62

Motivation:

June 14th, 2016

- Arrow's Impossibility Theorem only applies to social welfare functions.
- Can this be transferred to social choice functions?
- Yes! Intuitive result: Every "reasonable" social choice function is susceptible to manipulation (strategic voting).

B. Nebel, R. Mattmüller - Game Theory

Social Choice

Arrow's Impossibility

Gibbard-Satterthwaite

Motivation Preliminaries

Preliminaries Main Theorem

Some Positive Results

Summary

Strategic Manipulation and Incentive Compatibility

39 / 62

Definition (Strategic Manipulation, Incentive Compatibility)

A social choice function f can be strategically manipulated by voter i if there are preferences $\prec_1, \ldots, \prec_i, \ldots, \prec_n, \prec_i' \in L$ such that $a \prec_i b$ for $a = f(\prec_1, \ldots, \prec_i, \ldots, \prec_n)$ and $b = f(\prec_1, \ldots, \prec_i', \ldots, \prec_n)$.

The function f is called incentive compatible if f cannot be strategically manipulated.

Definition (Monotonicity)

A social choice function is monotone if $f(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = a$, $f(\prec_1, \ldots, \prec'_i, \ldots, \prec_n) = b$ and $a \neq b$ implies $b \prec_i a$ and $a \prec'_i b$.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

Results

Main Theores

Social

Theory

Arrow's

Impossibili

Theorem

Gibbard-

Incentive Compatibility and Monotonicity

UNI FREIBURG

Arrow's

Preliminaries

Main Theorer

Results

Proposition

A social choice function is monotone iff it is incentive compatible.

Proof

Let f be monotone. If $f(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = a$, $f(\prec_1, \ldots, \prec_i', \ldots, \prec_n) = b$ and $a \neq b$, then also $b \prec_i a$ and $a \prec_i' b$. Then there cannot be any $\prec_1, \ldots, \prec_n, \prec_i' \in L$ such that $f(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = a$, $f(\prec_1, \ldots, \prec_i', \ldots, \prec_n) = b$ and $a \prec_i b$. Conversely, violated monotonicity implies that there is a

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

40 / 62

42 / 62

Dictatorship in Social Choice Functions

FREIBUR

Social Choice Theory

Arrow's Impossibility

Gibbard-Satterthwaite

> Motivation Preliminaries

Some Positive

Summary

Definition (Dictatorship)

Voter i is a dictator in a social choice function f if for all $\prec_1, \ldots, \prec_i, \ldots, \prec_n \in L$, $f(\prec_1, \ldots, \prec_i, \ldots, \prec_n) = a$, where a is the unique candidate with $b \prec_i a$ for all $b \in A$ with $b \neq a$.

The function f is a dictatorship if there is a dictator in f.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

41 / 62

Gibbard-Satterthwaite Theorem

possibility for strategic manipulation.

Reduction to Arrow's Theorem

Approach:

- We prove the result by Gibbard and Satterthwaite using Arrow's Theorem.
- To that end, construct social welfare function from social choice function.

Notation:

Let $S \subseteq A$ and $\prec \in L$. By \prec^S we denote the order obtained by moving all elements from S "to the top" in \prec , while preserving the relative orderings of the elements in S and of those in $A \setminus S$. More formally:

- \blacksquare for $a,b \in S$: $a \prec^S b$ iff $a \prec b$,
- \blacksquare for $a,b \notin S$: $a \prec^S b$ iff $a \prec b$,
- for $a \notin S$, $b \in S$: $a \prec^S b$.

These conditions uniquely define \prec^S .

June 14th, 2016 B. Nebel, R. Mattmüller – Game Theory

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility

Gibbard-Satterthwaite Theorem

Motivation

Preliminaries

Main Theorem

Some Positive Results

Summary

Gibbard-Satterthwaite Theorem

Top-Preference Lemma

Lemma (Top Preference)

Let f be an incentive compatible and surjective social choice function. Then for all $\prec_1, \ldots, \prec_n \in L$ and all $\emptyset \neq S \subseteq A$, we have $f(\prec_1^S, \ldots, \prec_n^S) \in S$.

Proof

Let $a \in S$.

Since f is surjective, there are $\prec'_1, \ldots, \prec'_n \in L$ such that $f(\prec'_1, \ldots, \prec'_n) = a$.

Now, sequentially, for i = 1, ..., n, change the relation \prec_i' to \prec_i^S . At no point during this sequence of changes will f output any candidate $b \notin S$, because f is monotone.

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Motivation
Preliminaries
Main Theorem

Some Positive Results

Summary

Gibbard-Satterthwaite Theorem

Extension of a Social Choice Function

Overally.

UNI FREIBURG

Theory

Arrow's

Theorem

Preliminaries

Main Theoren

Results

Definition (Extension of a Social Choice Function)

The function $F: L^n \to L$ that extends the social choice function f is defined as $F(\prec_1, \ldots, \prec_n) = \prec$, where $a \prec b$ iff $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}}) = b$ for all $a,b \in A, a \neq b$.

Lemma

If f is an incentive compatible and surjective social choice function, then its extension F is a social welfare function.

Proof

We show that \prec is a strict linear order, i.e., asymmetric, total and transitive.

. . .

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

44 / 62

Gibbard-Satterthwaite Theorem

Extension of a Social Choice Function

Proof (ctd.)

- Asymmetry and Totality: Because of the Top-Preference Lemma, $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}})$ is either a or b, i.e., $a \prec b$ or $b \prec a$, but not both (asymmetry) and not neither (totality).
- Transitivity: We may already assume totality. Suppose that \prec is not transitive, i.e., $a \prec b$ and $b \prec c$, but not $a \prec c$, for some a, b and c. Because of totality, $c \prec a$. Consider $S = \{a,b,c\}$ and WLOG $f(\prec_1^{\{a,b,c\}},\ldots,\prec_n^{\{a,b,c\}}) = a$. Due to monotonicity of f, we get $f(\prec_1^{\{a,b\}},\ldots,\prec_n^{\{a,b\}}) = a$ by successively changing $\prec_i^{\{a,b,c\}}$ to $\prec_i^{\{a,b\}}$. Thus, we get $b \prec a$ in contradiction to our assumption.

Social Choice

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Preliminaries Main Theorem

Some Positive

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

45 / 62

Gibbard-Satterthwaite Theorem

Extension Lemma

Lemma (Extension Lemma)

If f is an incentive compatible, surjective, and non-dictatorial social choice function, then its extension F is a social welfare function that satisfies unanimity, independence of irrelevant alternatives, and non-dictatorship.

Proof

We already know that F is a social welfare function and still have to show unanimity, independence of irrelevant alternatives, and non-dictatorship.

- Unanimity: Let $a \prec_i b$ for all i. Then $(\prec_i^{\{a,b\}})^{\{b\}} = \prec_i^{\{a,b\}}$. Because of the Top-Preference Lemma, $f(\prec_1^{\{a,b\}},\ldots,\prec_n^{\{a,b\}}) = b$, hence $a \prec b$.
- Independence of irrelevant alternatives: . . .

UNI FREIBURG

> Social Choice Theory

Arrow's Impossibility

Satterthwaite Theorem

Main Theorem

Some Positive Results

Summary

46 / 62

Gibbard-Satterthwaite Theorem

■ Non-dictatorship: Obvious.

Extension Lemma

Proof (ctd.)

UNI FREIBURG

Arrow's Impossibilit

Gibbard-Satterthwaite

Motivation
Preliminaries
Main Theorem

Some Positive Results

Summary

■ Independence of irrelevant alternatives: If for all $i, a \prec_i b$ iff $a \prec'_i b$, then $f(\prec_1^{\{a,b\}}, \ldots, \prec_n^{\{a,b\}}) = f(\prec_1^{\prime \{a,b\}}, \ldots, \prec_n^{\prime \{a,b\}})$

must hold, since due to monotonicity the result does not

change when $\prec_i^{\{a,b\}}$ is successively replaced by $\prec_i'^{\{a,b\}}$.

Gibbard-Satterthwaite Theorem

Theory

Arrow's

Theorem

Theorem

Preliminaries

Main Theorem

Motivation

Some

Results

Impossibility

Theorem (Gibbard-Satterthwaite)

If f is an incentive compatible and surjective social choice function with three or more alternatives, then f is a dictatorship.

The purpose of mechanism design is to alleviate the negative results of Arrow and Gibbard and Satterthwaite by changing the underlying model. The two usually investigated modifications are:

- Introduction of money
- Restriction of admissible preference relations

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

48 / 62

4 Some Positive Results

May's Theorem

■ Single-Peaked Preferences

Social Choice Theory

Arrow's Impossibility Theorem

> Gibbard-Satterthwaite

Some Positive Results

May's Theorem Single-Peaked Preferences

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

50 / 62

May's Theorem

We had some negative results on social choice and welfare functions so far: Arrow, Gibbard-Satterthwaite.

Question: Are there also positive results for special cases?

First special case: Only two alternatives.

Intuition: With only two alternatives, no point in misrepresenting preferences.

Social Choice Theory

UNI FREIBURG

> Arrow's Impossibility Theorem

Satterthwaite

Some Positive Results

May's Theorem Single-Peaked Preferences

Summary

May's Theorem

Axioms for voting systems:

- Neutrality: "Names" of candidates/alternatives should not be relevant.
- Anonymity: "Names" of voters should not be relevant.
- Monotonicity: If a candidate wins, he should still win if one voter ranks him higher.

Theory
Arrow's

Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

May's Theorem Single-Peaked

Summary

June 14th, 2016 B. Nebel, R. Mattmüller – Game Theory

51 / 62

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

May's Theorem

Theorem (May, 1958)

A voting method for two alternatives satisfies anonymity, neutrality, and monotonicity if and only if it is the plurality method.

Proof.

- Obvious.
- ⇒: For simplicity, we assume that the number of voters is odd.

Anonymity and neutrality imply that only the numbers of votes for the candidates matter.

Let A be the set of voters that prefer candidate a, and let B be the set of voters that prefer candidate b. Consider a vote with |A| = |B| + 1.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

53 / 62

BURG

SE SE

Theory

Arrow's

Results May's Theo

Single-Peaked

Impossibility

NE SE

Theory

Arrow's

Positive

Results May's Theoren

Single-Peaked Preferences

May's Theorem

Social

Arrow's Impossibilit Theorem

Satterthwa

May's Theorem

Single-Peaked

Summary

Proof (ctd.)

- Case 1: Candidate a wins. Then by monotonicity, a still wins whenever |A| > |B|. With neutrality, we also get that b wins whenever |B| > |A|. This uniquely characterizes the plurality method.
- Case 2: Candidate b wins. Assume that one voter for a changes his preference to b. Then |A'| + 1 = |B'|. By monotonicity, b must still win. This is completely symmetric to the original vote. Hence, by neutrality, a should win. This is a contradiction, implying that case 2 cannot occur.

Remark: For three or more alternatives, there are no voting methods that satisfy such a small set of desirable criteria.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

54 / 62

Single-Peaked Preferences

The results by Arrow and Gibbard-Satterthwaite only apply is there are no restrictions on the preference orders.

Second special case: Let us now consider some special cases such as temperature or volume settings.

Definition (Single-peaked preference)

A preference relation \prec_i over the interval [0, 1] is called a single-peaked preference relation if there exists a value $p_i \in [0,1]$ such that for all $x \in [0,1] \setminus p_i$ and for all $\lambda \in [0,1)$,

 $X \prec_i \lambda X + (1-\lambda)p_i$

Single-peaked:

Single-Peaked Preferences

Not single-peaked:

June 14th, 2016 B. Nebel, R. Mattmüller - Game Theory Social

Impossibili Theorem

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

Single-Peaked Preferences

A THE STATE OF THE

UNI FREIBURG

Theory

Arrow's Impossibility

Theorem

Gibbard-

Some

Positive Results

May's Theore

Single-Peaked

First idea: Use arithmetic mean of all peak values.

Example

Preferred room temperatures:

■ Voter 1: 10°C■ Voter 2: 20°C

■ Voter 3: 21 °C

Arithmetic mean: 17°C. Is this incentive compatible?

No! Voter 1 can misrepresent his peak value as, e.g., $-11\,^{\circ}\mathrm{C}$.

Then the mean is 10 $^{\circ}\text{C},$ his favorite value!

Question: What is a good way to design incentive compatible social choice functions for this setting?

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

57 / 62

Median Rule

FREIBUR

Social

Theory

Arrow's

Theorem

Gibbard-

Some

May's Theor

Single-Peaked

Satterthwai

Impossibility

Definition (Median rule)

Let p_1, \ldots, p_n be the peaks for the preferences \prec_1, \ldots, \prec_n ordered such that we have $p_1 \leq p_2 \leq \cdots \leq p_n$. Then the median rule is the social choice function f with

$$f(\prec_1,\ldots,\prec_n)=p_{\lceil n/2\rceil}$$

Theorem

The median rule is surjective, incentive compatible, anonymous, and non-dictatorial.

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

58 / 62

Median Rule

Proof.

- Surjective: Obvious, because the median rule satisfies unanimity.
- Incentive compatible: Assume that p_i is below the median. Then reporting a lower value does not change the median (\rightsquigarrow does not help), and reporting a higher value can only increase the median (\rightsquigarrow does not help, either). Similarly, if p_i is above the median.
- Anonymous: Is implicit in the rule.
- Non-dictatorial: Follows from anonymity.

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some
Positive
Results
May's Theorem
Single-Peaked
Preferences

Summary

5 Summary

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

Summary

- Multitude of possible social welfare functions (plurality voting with or without runoff, instant runoff voting, Borda count, Schulze method, ...).
- All social welfare functions for more than two alternatives suffer from Arrow's Impossibility Theorem.
- Typical handling of this issue: Use unanimous, non-dictatorial social welfare functions violate independence of irrelevant alternatives.
- Thus: Strategic voting inevitable.
- The same holds for social choice functions (Gibbard-Satterthwaite Theorem).

Social Choice Theory

Arrow's Impossibility Theorem

Gibbard-Satterthwaite Theorem

Some Positive Results

Summary

June 14th, 2016

B. Nebel, R. Mattmüller - Game Theory

