Game Theory

10. Poker

Bernhard Nebel and Robert Mattmüller
Motivation
The system Libratus played a Poker tournament (*heads up no-limit Texas hold ’em*) from January 11 to 31, 2017 against four world-class Poker players.

- Heads up: One-on-One, i.e., a zero-sum game.
- No-limit: There is no limit in betting, only the stack the user has.
- Texas hold’em: Each player gets two private cards, then open cards are dealt: first three, then one, and finally another one.
- One combines the best 5 cards.
- Betting before the open cards are dealt and in the end: check, call, raise, or fold.

- Two teams (reversing the dealt cards).
- Libratus won the tournament with more than 1.7 Million US-$ (which neither the system nor the programming team got).
The humans behind the scene

Professional player Jason Les and Prof. Tuomas Sandholm (CMU)
Kuhn Poker
Kuhn Poker

- Minimal form of heads-up Poker, with only three cards: Jack, Queen, King.
- Each player is dealt one card and antes 1 chip (forced bet in the beginning).
- Player 1 can check (declines to make a bet), or bet 1 chip.
- After player 1 has checked, player 2 can check or bet. If player 2 bets, player 1 can fold or call (also betting one chip)
- After Player 1 has bet, player 2 can fold or call.
Kuhn Poker: Game tree
Kuhn has shown:

- There exist a family of Nash equilibria behavioral strategies for player 1 and one behavioral NE strategy for player 2.
- In this Nash equilibrium, the expected payoff for player 1 is $-\frac{1}{18}$.
- That shows the systematic disadvantage, the first player has!
Real Poker: Problems and techniques
State space size

- **Reminder**: In chess, there are 10^{47} distinct states, in Backgammon there are 10^{20}.

- Heads-up limit Texas hold’em has 10^{17} distinct states and 10^{14} information sets.

- No-limit: Depends on stack. With 20k$: 10^{161} information sets.
General techniques

- **Abstraction**: Action abstraction (bet size) and card abstractions (classifying similar hands into buckets) → only 10^{12} information sets.

- **Equilibrium computation**: Using counterfactual regret minimization as a self-play technique.

- **Sub-game solving**: In later betting rounds, one solves the game with a finer abstraction (and the information gained from the game so far).

- **Self-Improvement**: During the night, new parts of the game tree are explored, when abstraction is too coarse there.

- 25 Million core hours to compute strategies.
Counterfactual regret minimization
Regret matching in strategic games

Play a strategic game for a number of rounds:

- **Regret** is determined after each game round: If I had played another move, my payoff would have been *that* much higher!
- **Accumulate** all positive regrets over time.
- **Match** the probabilities of a mixed strategy with the accumulated regret.

Take the **average** over all mixed strategies.

If two players use the regret matching technique in a zero-sum game, then the average over the mixed strategies converges to Nash equilibrium strategies.
Assume we play rock, paper, scissors, and player 1 uses regret matching.

1. Initial cumulative regret is (0, 0, 0).
2. If there is no positive accumulated regret, play uniform strategy (1/3, 1/3, 1/3).
3. Player 1 chooses R, player 2 P.
4. Regret for player 1:
 - R: \(u_1(R, P) - u_1(R, R) = -1 - -1 = 0 \)
 - P: \(u_1(P, P) - u_1(R, R) = 0 - -1 = +1 \)
 - S: \(u_1(S, P) - u_1(R, R) = 1 - -1 = +2 \)
5. Player 1’s cumulative regret is now (0, 1, 2)
6. Regret matching suggests this strategy: \(\alpha_1 = (0, 1/3, 2/3) \).
7. Player 1 chooses P, while player 2 chooses S
Regret matching: RPS example with two rounds II

8 Regret for player 1:
- $R : u_1(R, S) - u_1(P, S) = 1 - -1 = +2$
- $P : u_1(P, S) - u_1(P, S) = -1 - -1 = 0$
- $S : u_1(S, S) - u_1(P, S) = 0 - -1 = +1$

9 Cumulative regret is now $(2, 1, 3)$

10 Regret matching: $\alpha_1^2 = (1/3, 1/6, 1/2)$

11 The average strategy is $(1/6, 3/12, 7/12)$. Well, not close to the NE strategy, but will converge!
Regret matching in strategic games does not buy us anything. We know how to compute NEs for zero-sum games already.

In extensive-form games, we can use it to modify our behavioral strategies at each information set.

We have to “pass down” the probability that an information set is reached and have to “pass up” the utility of a terminal history.

As in the strategic game case, the average strategy converges to a Nash equilibrium (in behavioral strategies).

Is it good enough?

Since a lot of histories are explored, also “off-NE strategies” will be visited and reasonable choice will occur.
During training, t and T denote time steps.

Let $\pi^\beta(h)$ be the probability that history h will be reached (depends on behavioral strategy profile β and chance moves).

$\pi^\beta (I_i) = \sum_{h \in I_i} \pi^\beta(h)$ is then the probability that information set I_i will be reached.

The counterfactual reach probability of I_i, written $\pi^\beta_\sim (I_i)$, is the probability of reaching I_i under the assumption that player i always uses actions with probability 1 in order to reach I_i.

If β is a behavioral strategy profile, then $\beta_{I_i \rightarrow a}$ is the same profile, except that at information set I_i, player i always plays a.
If \(z \in Z \) is a terminal history, then we write \(h \sqsubseteq z \), if \(h \) is a proper prefix of \(z \).

For \(h \sqsubseteq z \), the notation \(\pi^\beta(h, z) \) is the probability that we reach \(z \) from \(h \).

The **counterfactual utility** of \(\beta \) at non-terminal history \(h \) is:

\[
v_i(\beta, h) = \sum_{z \in Z, h \sqsubseteq z} \pi^\beta_i(h) \pi^\beta(h, z) u_i(z).
\]

The **counterfactual regret** of not taking action \(a \) at history \(h \in I_i \) is:

\[
r(h, a) = v_i(\beta_{l_i \rightarrow a}, h) - v_i(\beta, h).
\]
Counterfactual regret of not taking a at l_i:

$$r(l, a) = \sum_{h \in l_i} r(h, a).$$

$r_i^t(l_i, a)$ refers to the regret in episode t, when players use β^t and i does not a in l_i.

Cumulative counterfactual regret is then defined as:

$$R_i^T(l_i, a) = \sum_{t=1}^{T} r_i^t(l_i, a).$$

Let us define the positive cumulative counterfactual regret as:

$$R_i^{T,+}(l_i, a) = \max(R_i^T(l_i, a), 0).$$
Now, the regret matching strategy for episode $T + 1$ is called β^{T+1} and computed as:

$$
\beta^{T+1}(i, a) = \begin{cases}
\frac{R_{i}^{T,+}(i, a)}{\sum_{a \in A(I_i)} R_{i}^{T,+}(i, a)} & \text{if } \sum_{a \in A(I_i)} R_{i}^{T,+}(i, a) > 0 \\
\frac{1}{A(I_i)} & \text{otherwise.}
\end{cases}
$$
Motivation
Kuhn Poker
Real Poker: Problems and techniques
Counterfactual regret minimization

CFR in action

- One use usually what is called chance sampling, i.e., one uses one or more shuffles of the cards to compute the values for one episode.
- That also means that only a small part of the game tree needs to be in main memory.
- After a fixed number of episodes one stop and then has an (approximate) NE.
- Although, we would have liked a sequential equilibrium, we most probably will also collect regret values for information set, which are not on equilibrium profile histories.
- There are many variations and refinements of CFR.
- Looks like reinforcement learning, but it is not.