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Wide range of applications of game theory
Originally: in economics
Now: ubiquitous, also in computer science and AI

robotics
cloud computing
social networks
resource management
. . .

(Tim will talk about some of them, and/or others, on
Wednesday.)
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Today: Security games [Tambe et al., 2007ff.]

infrastructure security games (air travel, ports, trains)
green security games (fisheries, wildlife)
opportunistic crime security games (urban crime)

Some video lectures by M. Tambe:
https://www.youtube.com/watch?v=whl5TO7sMa8
(Infrastructure security games, 3 mins)
https://www.youtube.com/watch?v=61yHC5c2c-E
(Green security games, 8 mins)
https://www.youtube.com/watch?v=D4sxZm8-NdM
(ICAPS 2017 invited talk, 1 hour)
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Common setting in security games:
attacker and defender
defender wants to protect targets using patrolling units
defender chooses probability distribution over routes such
that expected damage is minimized given that the
probabilities can be observed by attacker
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Unobservable vs. observable defense probabilities:
Unobservable: strategic game
Observable: extensive game

Example (Security game payoff matrix)

Defender

Attacker

c d

a 1,1 3,0

b 0,0 2,1

Unobservable defense probabilities (strategic game): Only NE
is (a,c).
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Example (Security game (ctd.))
Observable defense probabilities (extensive game, mixed
strategies):

D

A

(1,1)

c

(3,0)

d

a

A

( 12 ,
1
2 )

c

( 52 ,
1
2 )

d

α = a
2 + b

2

A

(0,0)

c

(2,1)

d

b

. . . . . .

. . . . . . . . .

Subgame-perfect equilibrium (α,d).
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Definition (Security game)
A security game is a tuple 〈T ,R, (Si),Uc

d ,U
u
d ,U

c
a,Uu

a〉, where
T = {t1, . . . , tn} is a finite set of targets,
R = {r1, . . . , rK} is a finite set of resources,
Si ⊆ 2T is the set of schedules that ri can cover. A
schedule s ∈ Si is a set of targets that can be covered by
ri simultaneously.
Ux

y (ti) is the utility of player y ∈ {attacker,defender}, if
target ti is attacked and is x ∈ {covered,uncovered}.
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Example (Federal air marshal service)

A

B

C

D

f1, 9-11h

f6, 16-18h

f4, 10-11h

f2, 12-13h

f3, 14-15h

f5, 14-15h

r1

r2
T = {f1, f2, f3, f4, f5, f6}
R = {r1, r2}
S1 =
{{f1, f2, f3},{f4, f5}}
S2 = {{f2, f3, f6}}
Ux

y (ti) unspecified
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Attacker pure strategies: Aa = T
Attacker mixed strategies: ∆(T )
Defender pure strategies: allocations of resources to
schedules, i. e., s̄ = (s1, . . . ,sK ) ∈∏

K
j=1 Sj .

Target ti is covered in s̄ iff ti ∈ sj for at least one j,
1≤ j ≤ K . Allocation s̄ induces coverage vector
d̄ = (d1, . . . ,dn) ∈ {0,1}n with di = 1 iff ti is covered in s̄.
Let D be the set of coverage vectors for which there is an
allocation s̄ inducing it.
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Defender mixed strategies: ∆(D). For αd ∈ ∆(D), let
ci = ∑d̄=(d1,...,dn)∈D di ·αd (d̄) be the covering probability of
target ti .
Notation: φ (αd ) = (c1, . . . ,cn).
Example: d̄1 = (1,1,0), d̄2 = (0,1,1), αd (d̄1) = αd (d̄2) = 1

2 .
Then (c1,c2,c3) = (12 ,1,

1
2 ).

Payoffs: Let (αd ,αa) ∈ ∆(D)×∆(T ) be a mixed strategy
profile. Expected utility of player y ∈ {a,d}:

Uy(αd ,αa) =
n

∑
i=1

αa(ti) ·
(
ci ·Uc

y (ti) + (1−ci) ·Uu
y (ti)

)
.
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Definition of best responses, Nash equilibria (NE) and
maximinimizers (MM) as usual/expected. Hence omitted here.

More interesting scenario:
Defender first commits to a mixed defense strategy.
Attacker observes it over extended time period and learns
probabilities.
Attacker choses response αa = g(αd ) based on those
observations. g is his response function.
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Definition (Strong Stackelberg equilibrium)
A pair 〈αd ,g〉 is called a strong Stackelberg equilibrium (SSE)
if the following holds:

Ud (αd ,g(αd ))≥ Ud (α ′d ,g(α ′d )) for all α ′d ;
Ua(α̃d ,g(α̃d ))≥ Ua(α̃d ,g′(α̃d )) for all α̃d and all g′; and
tie breaking: Ud (α̃d ,g(α̃d ))≥ Ud (α̃d ,τ(α̃d )) for all α̃d and
all τ(α̃d ) that are attacker best responses to α̃d .
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Theorem
Defender NE strategies and defender MM strategies are the
same.

Theorem
NE strategies are interchangeable.

Theorem
Defender SSE utilities are always at least as large as defender
NE utilities.
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Definition (Subsets of schedules are schedules property)
A security game satisfies the SSAS property (“subsets of
schedules are schedules”) if for all ri ∈ R, for all s ∈ Si , and for
all s′ ⊆ s, also s′ ∈ Si .

Remark: SSAS often “natural” to achieve, by “doing nothing”.

Theorem
If SSAS holds, then every defender SSE strategy is also a
defender NE strategy.

Consequence: When choosing between SSE and NE
strategies (assuming being observed or not), for the defender
it is unproblematic to restrict attention to SSE strategies. NE
interchangeability no risk of chosing a “wrong” NE strategy.
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Outlook:

With homogeneous resources and a small restriction on
utility functions: then there exists unique defender MM
strategy, which is also a unique SSE and NE strategy.
Theory can be generalized to multiple attacker resources
(attacking multiple targets simultaneously).
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Case study: security games (infrastructure, green,
opportunistic crime)
Modeled as Stackelberg games with strong Stackelberg
equilibria (SSE)
Results:

Though not zero-sum in general, similar results: defender
NE = defender MM
 Nash equilibria interchangeable
 no equilibrium selection problem
Every defender SSE strategy also a NE strategy under
reasonable assumption (SSAS)
 not knowing whether being observed is unproblematic
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