Game Theory

6. Extensive Games

Albert-Ludwigs-Universität Freiburg

UNI FREIBURG

Bernhard Nebel and Robert Mattmüller May 9th, 2018

Mativation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Summary

Motivation

Motivation

- So far: All players move simultaneously, and then the outcome is determined.
- Often in practice: Several moves in sequence (e.g. in chess).
 - → cannot be directly reflected by strategic games.
- Extensive games (with perfect information) reflect such situations by modeling games as game trees.
- Idea: Players have several decision points where they can decide how to play.
- Strategies: Mappings from decision points in the game tree to actions to be played.

Motivation

Definitions

Solution Concepts

One-Deviation

> Kuhn's Theorem

Two Extensions

25

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Summary

Definitions

Definition (Extensive game with perfect information)

An extensive game with perfect information is a tuple $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ that consists of:

- A finite non-empty set N of players.
- A set *H* of (finite or infinite) sequences, called histories, such that
 - the empty sequence $\langle \rangle \in H$,
 - *H* is closed under prefixes: if $\langle a^1,...,a^k \rangle \in H$ for some $k \in \mathbb{N} \cup \{\infty\}$, and l < k, then also $\langle a^1,...,a^l \rangle \in H$, and
 - H is closed under limits: if for some infinite sequence $\langle a^i \rangle_{i=1}^{\infty}$, we have $\langle a^i \rangle_{i=1}^{k} \in H$ for all $k \in \mathbb{N}$, then $\langle a^i \rangle_{i=1}^{\infty} \in H$.

All infinite histories and all histories $\langle a^i \rangle_{i=1}^k \in H$, for which there is no a^{k+1} such that $\langle a^i \rangle_{i=1}^{k+1} \in H$ are called terminal histories Z. Components of a history are called actions.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

<u>Definition</u> (Extensive game with perfect information, ctd.)

- \blacksquare A player function $P: H \setminus Z \rightarrow N$ that determines which player's turn it is to move after a given nonterminal history.
- For each player $i \in N$, a utility function (or payoff function) $u_i: Z \to \mathbb{R}$ defined on the set of terminal histories.

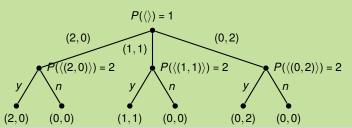
The game is called finite, if H is finite. It has a finite horizon, if the length of histories is bounded from above.

Assumption: All ingredients of Γ are common knowledge amongst the players of the game.

Terminology: In the following, we will simply write extensive games instead of extensive games with perfect information.

Example (Division game)

- Two identical objects should be divided among two players.
- Player 1 proposes an allocation.
- Player 2 agrees or rejects.
 - On agreement: Allocation as proposed.
 - On rejection: Nobody gets anything.



Motivation

Definitions

Solution Concepts

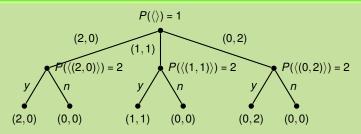
One-Deviation Property

Kuhn's Theorem

Two Extension:

Extensive Games

Example (Division game, formally)



$$N = \{1, 2\}$$

$$\blacksquare H = \{\langle \rangle, \langle (2,0) \rangle, \langle (1,1) \rangle, \langle (0,2) \rangle, \langle (2,0),y \rangle, \langle (2,0),n \rangle, \ldots \}$$

■
$$P(\langle \rangle)$$
 = 1, $P(h)$ = 2 for all $h \in H \setminus Z$ with $h \neq \langle \rangle$

$$u_1(\langle (2,0),y\rangle) = 2, u_2(\langle (2,0),y\rangle) = 0, \text{ etc.}$$

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Extensive Games

Notation:

Let $h = \langle a^1, \dots, a^k \rangle$ be a history, and a an action.

- Then (h,a) is the history $\langle a^1, \ldots, a^k, a \rangle$.
- If $h' = \langle b^1, \dots, b^\ell \rangle$, then (h, h') is the history $\langle a^1, \dots, a^k, b^1, \dots, b^\ell \rangle$.
- The set of actions from which player P(h) can choose after a history $h \in H \setminus Z$ is written as

$$A(h) = \{a \mid (h, a) \in H\}.$$

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Definition (Strategy in an extensive game)

A strategy of a player i in an extensive game $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ is a function s_i that assigns to each nonterminal history $h \in H \setminus Z$ with P(h) = i an action $a \in A(h)$. The set of strategies of player i is denoted as S_i .

Remark: Strategies require us to assign actions to histories *h*, even if it is clear that they will never be played (e.g., because *h* will never be reached because of some earlier action).

Notation (for finite games): A strategy for a player is written as a string of actions at decision nodes as visited in a breadth-first order.

Motivatio

Definitions

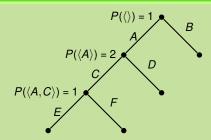
Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Example (Strategies in an extensive game)



- Strategies for player 1: AE, AF, BE and BF
- Strategies for player 2: C and D.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

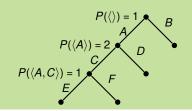
Outcome

Definition (Outcome)

The outcome O(s) of a strategy profile $s = (s_i)_{i \in N}$ is the (possibly infinite) terminal history $h = \langle a^i \rangle_{i=1}^k$, with $k \in \mathbb{N} \cup \{\infty\}$, such that for all $\ell \in \mathbb{N}$ with $0 \le \ell < k$,

$$s_{P(\langle a^1,\ldots,a^\ell\rangle)}(\langle a^1,\ldots,a^\ell\rangle)=a^{\ell+1}.$$

Example (Outcome)



$$O(AF,C) = \langle A,C,F \rangle$$

 $O(AE,D) = \langle A,D \rangle$.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Summary

Solution Concepts

Definition (Nash equilibrium in an extensive game)

A Nash equilibrium in an extensive game $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ is a strategy profile s^* such that for every player $i \in N$ and for all strategies $s_i \in S_i$,

$$u_i(O(s_{-i}^*, s_i^*)) \geq u_i(O(s_{-i}^*, s_i)).$$

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Induced Strategic Game

Definition (Induced strategic game)

The strategic game G induced by an extensive game $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ is defined by $G = \langle N, (A_i')_{i \in N}, (u_i')_{i \in N} \rangle$, where

- \blacksquare $A'_i = S_i$ for all $i \in N$, and
- $u_i'(a) = u_i(O(a))$ for all $i \in N$.

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theoren

Two Extension

Summary

Proposition

The Nash equilibria of an extensive game Γ are exactly the Nash equilibria of the induced strategic game G of Γ .

Induced Strategic Game

Motivation

Definitions

Solution Concepts

One-Deviation

Kuhn's Theorem

Two Extensions

Summary

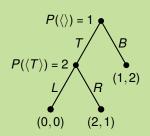
Remarks:

- Each extensive game can be transformed into a strategic game, but the resulting game can be exponentially larger.
- The other direction does not work, because in extensive games, we do not have simultaneous actions.

H.

Example (Empty threat)

Extensive game:



Strategies:

- Player 1: T and B
- Player 2: L and R

Strategic form:

	L	R
Т	0,0	2,1
В	1,2	1,2

Nash equilibria: (B,L) and (T,R). However, (B,L) is not realistic:

- Player 1 plays B, "fearing" response L to T.
- But player 2 would never play L in the extensive game.
 - \rightsquigarrow (B,L) involves "empty threat".

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Subgames

Idea: Exclude empty threats.

How? Demand that a strategy profile is not only a Nash equilibrium in the strategic form, but also in every subgame.

Definition (Subgame)

A subgame of an extensive game $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$, starting after history h, is the game $\Gamma(h) = \langle N, H|_h, P|_h, (u_i|_h)_{i \in N} \rangle$, where

- $H|_{h} = \{h' | (h,h') \in H\},\$
- Arr $P|_h(h') = P(h,h')$ for all $h' \in H|_h$, and
- $u_i|_h(h') = u_i(h,h')$ for all $h' \in H|_h$.

Motivatio

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Definition (Strategy in a subgame)

Let Γ be an extensive game and $\Gamma(h)$ a subgame of Γ starting after some history h.

For each strategy s_i of Γ , let $s_i|_h$ be the strategy induced by s_i for $\Gamma(h)$. Formally, for all $h' \in H|_h$,

$$s_i|_h(h') = s_i(h,h').$$

The outcome function of $\Gamma(h)$ is denoted by O_h .

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

A strategy profile s^* in an extensive game $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ is a subgame-perfect equilibrium if and only if for every player $i \in N$ and every nonterminal history $h \in H \setminus Z$ with P(h) = i,

$$u_i|_h(O_h(s_{-i}^*|_h,s_i^*|_h)) \ge u_i|_h(O_h(s_{-i}^*|_h,s_i))$$

for every strategy $s_i \in S_i$ in subgame $\Gamma(h)$.

Motivation

Colution

Solution Concepts

One-Deviation Property

Theorem

Two Extensions

Subgame-Perfect Equilibria

$P(\langle \rangle) =$

(0,0)

(2, 1)

Two Nash equilibria:

- \blacksquare (T,R): subgame-perfect, because:
 - In history $h = \langle T \rangle$: subgame-perfect.
 - In history $h = \langle \rangle$: player 1 obtains utility 1 when choosing B and utility of 2 when choosing T.
- (B, L): not subgame-perfect, since L does not maximize the utility of player 2 in history $h = \langle T \rangle$.

Motivation

Solution Concepts

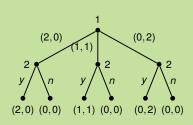
One-Property

Kuhn's Theorem

Two

Subgame-Perfect Equilibria

Example (Subgame-perfect equilibria in division game)



Equilibria in subgames:

- in $\Gamma(\langle (2,0)\rangle)$: y and n
- in $\Gamma(\langle (1,1)\rangle)$: only y
- in $\Gamma(\langle (0,2)\rangle)$: only y
- in $\Gamma(\langle \rangle)$: ((2,0), vvv)and ((1,1), nyy)

Nash equilibria (red: empty threat):

- ((2,0),yyy),((2,0),yyn),((2,0),yny),((2,0),ynn),((2,0),nny),((2,0),nnn),
- \blacksquare ((1,1), nyy), ((1,1), nyn),
- ((0,2),nny)((0,2),nnn)

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two

One-Deviation Property

Motivation

Definitions

One-Deviation Property

Kuhn's Theorem

Two

Motivation

Existence:

- Does every extensive game have a subgame-perfect equilibrium?
- If not, which extensive games do have a subgame-perfect equilibrium?

Computation:

- If a subgame-perfect equilibrium exists, how to compute it?
- How complex is that computation?

Motivation

Definitions

One-Deviation Property

Kuhn's Theorem

Two

Positive case (a subgame-perfect equilibrium exists):

- Step 1: Show that is suffices to consider local deviations from strategies (for finite-horizon games).
- Step 2: Show how to systematically explore such local deviations to find a subgame-perfect equilibrium (for finite games).

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two

Motivation

Definitions

Solution Concept

One-Deviation Property

Kuhn's Theorem

Two Extensions

Summary

Definition

Let Γ be a finite-horizon extensive game. Then $\ell(\Gamma)$ denotes the length of the longest history of Γ .

A strategy profile s^* in an extensive game $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ satisfies the one-deviation property if and only if for every player $i \in N$ and every nonterminal history $h \in H \setminus Z$ with P(h) = i,

$$u_i|_h(O_h(s_{-i}^*|_h,s_i^*|_h)) \ge u_i|_h(O_h(s_{-i}^*|_h,s_i))$$

for every strategy $s_i \in S_i$ in subgame $\Gamma(h)$ that differs from $s_i^*|_h$ only in the action it prescribes after the initial history of $\Gamma(h)$.

Note: Without the highlighted parts, this is just the definition of subgame-perfect equilibria!

Motivatio

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

NE NE

Lemma

Let $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ be a finite-horizon extensive game. Then a strategy profile s^* is a subgame-perfect equilibrium of Γ if and only if it satisfies the one-deviation property.

Proof

- (⇒) Clear.
- (⇐) By contradiction:

Suppose that s^* is not a subgame-perfect equilibrium.

Then there is a history h and a player i such that s_i is a profitable deviation for player i in subgame $\Gamma(h)$.

. . . .

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Extensions

Lemma

Let $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ be a finite-horizon extensive game. Then a strategy profile s^* is a subgame-perfect equilibrium of Γ if and only if it satisfies the one-deviation property.

Proof

- (⇒) Clear.
- (⇐) By contradiction:
 Suppose that s* is not a subgame-perfect equilibrium.

Then there is a history h and a player i such that s_i is a profitable deviation for player i in subgame $\Gamma(h)$.

. . .

Motivatio

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Summarv

ERE B

Lemma

Let $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ be a finite-horizon extensive game. Then a strategy profile s^* is a subgame-perfect equilibrium of Γ if and only if it satisfies the one-deviation property.

Proof

- (⇒) Clear.
- (⇐) By contradiction:

Suppose that s^* is not a subgame-perfect equilibrium.

Then there is a history h and a player i such that s_i is a profitable deviation for player i in subgame $\Gamma(h)$.

. . .

Motivation

Definitions

Concepts

One-Deviation Property

Kuhn's Theorem

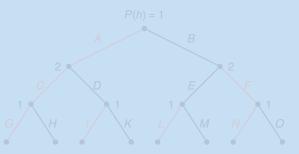
Two

Extensions

Proof (ctd.)

• (\Leftarrow) ... WLOG, the number of histories h' with $s_i(h') \neq s_i^*|_h(h')$ is at most $\ell(\Gamma(h))$ and hence finite (finite horizon assumption!), since deviations not on resulting outcome path are irrelevant.

Illustration: strategies $s_1^*|_h = AGILN$ and $s_2^*|_h = CF$ red:



Motivation

Definitions

Solution Concepts

One-Deviation Property

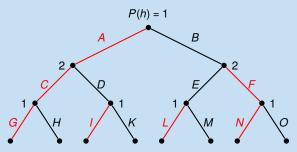
Kuhn's Theorem

Two Extensions

Proof (ctd.)

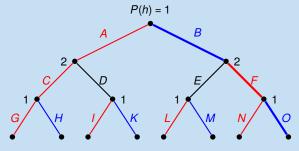
■ (\Leftarrow) ... WLOG, the number of histories h' with $s_i(h') \neq s_i^*|_h(h')$ is at most $\ell(\Gamma(h))$ and hence finite (finite horizon assumption!), since deviations not on resulting outcome path are irrelevant.

Illustration: strategies $s_1^*|_h = AGILN$ and $s_2^*|_h = CF$ red:



Proof (ctd.)

■ (\Leftarrow) ... Illustration for WLOG assumption: Assume $s_1 = BHKMO$ (blue) profitable deviation:



Then only *B* and *O* really matter.

Motivation

Definitions

Concept

One-Deviation Property

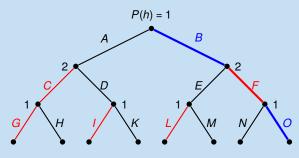
Kuhn's Theorem

Two Extensions

NE NE

Proof (ctd.)

 (\Leftarrow) ... Illustration for WLOG assumption: And hence $\tilde{s}_1 = BGILO$ (blue) also profitable deviation:



Motivation

Definitions

Concept

One-Deviation Property

Kuhn's Theorem

> Two Extensions

Proof (ctd.)

■ (⇐) ...

Choose profitable deviation s_i in $\Gamma(h)$ with minimal number of deviation points (such s_i must exist).

Let h^* be the longest history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$, i.e., "deepest" deviation point for s_i .

Then in $\Gamma(h, h^*)$, $s_i|_{h^*}$ differs from $s_i^*|_{(h,h^*)}$ only in the initial history.

Moreover, $s_i|_{h^*}$ is a profitable deviation in $\Gamma(h,h^*)$, since h^* is the *longest* history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$.

So, $\Gamma(h,h^*)$ is the desired subgame where a one-step deviation is sufficient to improve utility.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

> Two Extensions

NE

Proof (ctd.)

■ (⇐) ...

Choose profitable deviation s_i in $\Gamma(h)$ with minimal number of deviation points (such s_i must exist).

Let h^* be the longest history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$, i.e., "deepest" deviation point for s_i .

Then in $\Gamma(h,h^*)$, $s_i|_{h^*}$ differs from $s_i^*|_{(h,h^*)}$ only in the initial history.

Moreover, $s_i|_{h^*}$ is a profitable deviation in $\Gamma(h, h^*)$, since h^* is the *longest* history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$.

So, $\Gamma(h,h^*)$ is the desired subgame where a one-step deviation is sufficient to improve utility.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

NE NE

Proof (ctd.)

■ (⇐) ...

Choose profitable deviation s_i in $\Gamma(h)$ with minimal number of deviation points (such s_i must exist).

Let h^* be the longest history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$, i.e., "deepest" deviation point for s_i .

Then in $\Gamma(h,h^*)$, $s_i|_{h^*}$ differs from $s_i^*|_{(h,h^*)}$ only in the initial history.

Moreover, $s_i|_{h^*}$ is a profitable deviation in $\Gamma(h,h^*)$, since h^* is the *longest* history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$.

So, $\Gamma(h,h^*)$ is the desired subgame where a one-step deviation is sufficient to improve utility.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

NE NE

Proof (ctd.)

■ (⇐) ...

Choose profitable deviation s_i in $\Gamma(h)$ with minimal number of deviation points (such s_i must exist).

Let h^* be the longest history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$, i.e., "deepest" deviation point for s_i .

Then in $\Gamma(h,h^*)$, $s_i|_{h^*}$ differs from $s_i^*|_{(h,h^*)}$ only in the initial history.

Moreover, $s_i|_{h^*}$ is a profitable deviation in $\Gamma(h, h^*)$, since h^* is the *longest* history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$.

So, $\Gamma(h,h^*)$ is the desired subgame where a one-step deviation is sufficient to improve utility.

Motivatio

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

NE NE

Proof (ctd.)

■ (⇐) ...

Choose profitable deviation s_i in $\Gamma(h)$ with minimal number of deviation points (such s_i must exist).

Let h^* be the longest history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$, i.e., "deepest" deviation point for s_i .

Then in $\Gamma(h,h^*)$, $s_i|_{h^*}$ differs from $s_i^*|_{(h,h^*)}$ only in the initial history.

Moreover, $s_i|_{h^*}$ is a profitable deviation in $\Gamma(h,h^*)$, since h^* is the *longest* history in $\Gamma(h)$ with $s_i(h^*) \neq s_i^*|_h(h^*)$.

So, $\Gamma(h,h^*)$ is the desired subgame where a one-step deviation is sufficient to improve utility.

Motivatio

Definitions

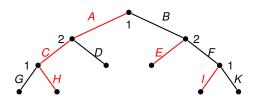
Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Example



To show that (AHI, CE) is a subgame-perfect equilibrium, it suffices to check these deviating strategies:

Player 1:

Player 2:

■ G in subgame $\Gamma(\langle A, C \rangle)$

■ D in subgame $\Gamma(\langle A \rangle)$

■ K in subgame $\Gamma(\langle B, F \rangle)$

 \blacksquare *F* in subgame $\Gamma(\langle B \rangle)$

■ *BHI* in Γ

In particular, e.g., no need to check if strategy BGK of player 1 is profitable in Γ .

Motivation

Definitions

Solution Concepts

One-Deviation Property

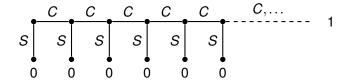
Kuhn's Theorem

Two Extensions

Remark on Infinite-Horizon Games

The corresponding proposition for infinite-horizon games does not hold.

Counterexample (one-player case):



Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Summary

Strategy s_i with $s_i(h) = S$ for all $h \in H \setminus Z$

- satisfies one deviation property, but
- is not a subgame-perfect equilibrium, since it is dominated by s_i^* with $s_i^*(h) = C$ for all $h \in H \setminus Z$.

Motivation

Definitions

Solution

One-Deviation Property

> Kuhn's Theorem

Two

Summary

Kuhn's Theorem

FREIB

Theorem (Kuhn)

Every finite extensive game has a subgame-perfect equilibrium.

Proof idea:

- Proof is constructive and builds a subgame-perfect equilibrium bottom-up (aka backward induction).
- For those familiar with the Foundations of AI lecture: generalization of Minimax algorithm to general-sum games with possibly more than two players.

Motivation

Definitions

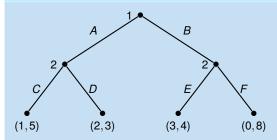
Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extension:

Example



Motivation

Definitions

Solution Concepts

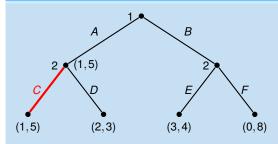
One-Deviation Property

Kuhn's Theorem

Two Extensions

REE BE

Example



$$s_2(\langle A \rangle) = C$$

$$t_1(\langle A \rangle) = 1$$

$$t_2(\langle A \rangle) = 5$$

Motivation

Definitions

Solution Concepts

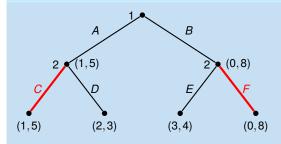
One-Deviation Property

Kuhn's Theorem

Two Extensions

FREE

Example



$$s_2(\langle A \rangle) = C$$

$$t_1(\langle A \rangle) = 1$$

$$t_2(\langle A \rangle) = 5$$

$$s_2(\langle B \rangle) = F$$

$$t_1(\langle B \rangle) = 0$$

$$t_2(\langle B \rangle) = 8$$

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

NE NE

Motivation

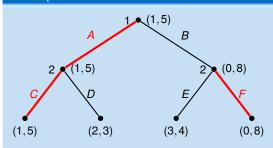
Definitions

One-Deviation Property Kuhn's Theorem

Two

Summary

Example



$$s_2(\langle A \rangle) = C$$

$$t_1(\langle A \rangle) = 1$$

$$t_2(\langle A \rangle) = 5$$

$$s_2(\langle B \rangle) = F$$

$$t_1(\langle B \rangle) = 0$$

$$t_2(\langle B \rangle) = 8$$

$$s_1(\langle \rangle) = A$$

$$t_1(\langle \rangle) = 1$$

$$t_2(\langle \rangle) = 5$$

HE B

A bit more formally:

Proof

Let $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ be a finite extensive game.

Construct a subgame-perfect equilibrium by induction on $\ell(\Gamma(h))$ for all subgames $\Gamma(h)$. In parallel, construct functions $t_i: H \to \mathbb{R}$ for all players $i \in N$ s.t. $t_i(h)$ is the payoff for player i in a subgame-perfect equilibrium in subgame $\Gamma(h)$.

Base case: If $\ell(\Gamma(h)) = 0$, then $t_i(h) = u_i(h)$ for all $i \in N$

. . .

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

FREIB

A bit more formally:

Proof

Let $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ be a finite extensive game.

Construct a subgame-perfect equilibrium by induction on $\ell(\Gamma(h))$ for all subgames $\Gamma(h)$. In parallel, construct functions $t_i: H \to \mathbb{R}$ for all players $i \in N$ s. t. $t_i(h)$ is the payoff for player i in a subgame-perfect equilibrium in subgame $\Gamma(h)$.

Base case: If $\ell(\Gamma(h)) = 0$, then $t_i(h) = u_i(h)$ for all $i \in N$

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

A bit more formally:

Proof

Let $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$ be a finite extensive game.

Construct a subgame-perfect equilibrium by induction on $\ell(\Gamma(h))$ for all subgames $\Gamma(h)$. In parallel, construct functions $t_i: H \to \mathbb{R}$ for all players $i \in N$ s. t. $t_i(h)$ is the payoff for player i in a subgame-perfect equilibrium in subgame $\Gamma(h)$.

Base case: If $\ell(\Gamma(h)) = 0$, then $t_i(h) = u_i(h)$ for all $i \in N$.

. . .

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

NE E

Proof (ctd.)

Inductive case: If $t_i(h)$ already defined for all $h \in H$ with $\ell(\Gamma(h)) \le k$, consider $h^* \in H$ with $\ell(\Gamma(h^*)) = k+1$ and $P(h^*) = i$.

For all $a \in A(h^*)$, $\ell(\Gamma(h^*, a)) \le k$, let

$$s_i(h^*) := \underset{a \in A(h^*)}{\operatorname{argmax}} t_i(h^*, a)$$
 and

$$t_j(h^*) := t_j(h^*, s_i(h^*))$$
 for all players $j \in N$

Inductively, we obtain a strategy profile *s* that satisfies the one-deviation property.

With the one-deviation property lemma it follows that *s* is a subgame-perfect equilibrium.

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Proof (ctd.)

Inductive case: If $t_i(h)$ already defined for all $h \in H$ with $\ell(\Gamma(h)) \le k$, consider $h^* \in H$ with $\ell(\Gamma(h^*)) = k+1$ and $P(h^*) = i$. For all $a \in A(h^*)$, $\ell(\Gamma(h^*,a)) \le k$, let

$$s_i(h^*) := \underset{a \in A(h^*)}{\operatorname{argmax}} t_i(h^*, a)$$
 and $t_i(h^*) := t_i(h^*, s_i(h^*))$ for all players $i \in N$.

Inductively, we obtain a strategy profile *s* that satisfies the one-deviation property.

With the one-deviation property lemma it follows that *s* is a subgame-perfect equilibrium.

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

NE NE

Proof (ctd.)

Inductive case: If $t_i(h)$ already defined for all $h \in H$ with $\ell(\Gamma(h)) \le k$, consider $h^* \in H$ with $\ell(\Gamma(h^*)) = k+1$ and $P(h^*) = i$. For all $a \in A(h^*)$, $\ell(\Gamma(h^*,a)) \le k$, let

$$s_i(h^*) := \operatorname*{argmax} t_i(h^*, a)$$
 and $t_i(h^*) := t_i(h^*, s_i(h^*))$ for all players $j \in N$.

Inductively, we obtain a strategy profile *s* that satisfies the one-deviation property.

With the one-deviation property lemma it follows that s is a subgame-perfect equilibrium.

Motivatio

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

- In principle: sample subgame-perfect equilibrium effectively computable using the technique from the above proof.
- In practice: often game trees not enumerated in advance, hence unavailable for backward induction.
- E.g., for branching factor b and depth m, procedure needs time $O(b^m)$.

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Remark on Infinite Games

Corresponding proposition for infinite games does not hold.

Counterexamples (both for one-player case):

A) finite horizon, infinite branching factor:

Infinitely many actions $a \in A = [0, 1)$ with payoffs $u_1(\langle a \rangle) = a$ for all $a \in A$.

There exists no subgame-perfect equilibrium in this game.

Motivation

Definitions

Solution Concepts

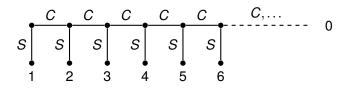
One-Deviation Property

Kuhn's Theorem

Two Extensions

Remark on Infinite Games

B) infinite horizon, finite branching factor:



$$u_1(CCC...) = 0$$
 and $u_1(\underbrace{CC...C}_nS) = n + 1$.

No subgame-perfect equilibrium.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Motivation

Definitions

Solution Concept

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Summary

Uniqueness:

Kuhn's theorem tells us nothing about uniqueness of subgame-perfect equilibria. However, if no two histories get the same evaluation by any player, then the subgame-perfect equilibrium is unique.

- There are 5 *rational* pirates, *A*, *B*, *C*, *D* and *E*. They find 100 gold coins. They must decide how to distribute them.
- The pirates have a strict order of *seniority*: *A* is senior to *B* who is senior to *C*, who is senior to *D*, who is senior to *E*.
- The pirate world's rules of distribution say that the most senior pirate first *proposes* a distribution of coins. The pirates, including the proposer, then *vote* on whether to accept this distribution (in order from most junior to senior). In case of a tie vote, the proposer has the casting vote. If the distribution is accepted, the coins are disbursed and the *game ends*. If not, the proposer is thrown overboard from the pirate ship and dies, and the next most senior pirate makes a new proposal to apply the method again.

Motivatio

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

- There are 5 *rational* pirates, *A*, *B*, *C*, *D* and *E*. They find 100 gold coins. They must decide how to distribute them.
- The pirates have a strict order of *seniority*: *A* is senior to *B*, who is senior to *C*, who is senior to *D*, who is senior to *E*.
- The pirate world's rules of distribution say that the most senior pirate first *proposes* a distribution of coins. The pirates, including the proposer, then *vote* on whether to accept this distribution (in order from most junior to senior). In case of a tie vote, the proposer has the casting vote. If the distribution is accepted, the coins are disbursed and the *game ends*. If not, the proposer is thrown overboard from the pirate ship and dies, and the next most senior pirate makes a new proposal to apply the method again.

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

- There are 5 *rational* pirates, *A*, *B*, *C*, *D* and *E*. They find 100 gold coins. They must decide how to distribute them.
- The pirates have a strict order of *seniority*: *A* is senior to *B*, who is senior to *C*, who is senior to *D*, who is senior to *E*.
- The pirate world's rules of distribution say that the most senior pirate first *proposes* a distribution of coins. The pirates, including the proposer, then *vote* on whether to accept this distribution (in order from most junior to senior). In case of a tie vote, the proposer has the casting vote. If the distribution is accepted, the coins are disbursed and the *game ends*. If not, the proposer is thrown overboard from the pirate ship and dies, and the next most senior pirate makes a new proposal to apply the method again.

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Pirates base their decisions on three factors. First of all, each pirate wants to *survive*. Second, everything being equal, each pirate wants to *maximize the number of gold coins* each receives. Third, each pirate would prefer to *throw another overboard*, if all other results would otherwise be equal.

Motivatio

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Pirates base their decisions on three factors. First of all, each pirate wants to *survive*. Second, everything being equal, each pirate wants to *maximize the number of gold coins* each receives. Third, each pirate would prefer to *throw another overboard*, if all other results would otherwise be equal.

Motivation

Definitions

Solution Concepts

One-Deviation Property

> Kuhn's Theorem

Two Extensions

Pirates: Formalization

- Players $N = \{A, B, C, D, E\}$;
- actions are:
 - proposals by a pirate: $\langle A: x_A, B: x_b, C: x_B, D: x_D, E: x_E \rangle$, with $\sum_{i \in \{A,B,C,D,E\}} x_i = 100$;
 - votings: *y* for accepting, *n* for rejecting;
- histories are sequences of a proposal, followed by votings of the alive pirates;
- utilities:
 - for pirates who are alive: utilities are according to the accepted proposal plus x/100, x being the number of dead pirates;
 - for dead pirates: -100.

Remark: Very large game tree!

Motivatio

Definitions

Solution Concepts

One-Deviation

> Kuhn's Theorem

Two Extensions

- Assume only D and E are still alive. D can propose $\langle A:0,B:0,C:0,D:100,E:0\rangle$, because D has the casting vote!
- Assume C, D, and E are alive. For C it is enough to offer 1 coin to E to get his vote: $\langle A:0,B:0,C:99,D:0,E:1\rangle$
- Assume B, C, D, and E are alive. B offering D one coin is enough because of the casting vote: $\langle A:0,B:99,C:0,D:1,E:0\rangle$.
- 4 Assume A, B, C, D, and E are alive. A offering C and E each one coin is enough: $\langle A: 98, B: 0, C: 1, D: 0, E: 1 \rangle$ (note that giving 1 to D instaed to E does not help).

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

- Assume only D and E are still alive. D can propose $\langle A:0,B:0,C:0,D:100,E:0\rangle$, because D has the casting vote!
- Assume C, D, and E are alive. For C it is enough to offer 1 coin to E to get his vote: $\langle A:0,B:0,C:99,D:0,E:1\rangle$.
- Assume B, C, D, and E are alive. B offering D one coin is enough because of the casting vote: ⟨A: 0, B: 99, C: 0, D: 1, E: 0⟩.
- 4 Assume A, B, C, D, and E are alive. A offering C and E each one coin is enough: $\langle A:98,B:0,C:1,D:0,E:1\rangle$ (note that giving 1 to D instaed to E does not help).

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

- Assume only D and E are still alive. D can propose $\langle A:0,B:0,C:0,D:100,E:0\rangle$, because D has the casting vote!
- Assume C, D, and E are alive. For C it is enough to offer 1 coin to E to get his vote: $\langle A:0,B:0,C:99,D:0,E:1 \rangle$.
- Assume B, C, D, and E are alive. B offering D one coin is enough because of the casting vote: ⟨A: 0, B: 99, C: 0, D: 1, E: 0⟩.
- Assume A, B, C, D, and E are alive. A offering C and E each one coin is enough: $\langle A:98,B:0,C:1,D:0,E:1\rangle$ (note that giving 1 to D instaed to E does not help).

Motivation

Definitions

Solution Concepts

One-Deviation

Kuhn's Theorem

Two Extensions

- Assume only D and E are still alive. D can propose $\langle A:0,B:0,C:0,D:100,E:0\rangle$, because D has the casting vote!
- Assume C, D, and E are alive. For C it is enough to offer 1 coin to E to get his vote: $\langle A:0,B:0,C:99,D:0,E:1 \rangle$.
- Assume B, C, D, and E are alive. B offering D one coin is enough because of the casting vote: ⟨A: 0, B: 99, C: 0, D: 1, E: 0⟩.
- 4 Assume A, B, C, D, and E are alive. A offering C and E each one coin is enough: $\langle A:98,B:0,C:1,D:0,E:1\rangle$ (note that giving 1 to D instaed to E does not help).

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extensions

Two Extensions

Motivation

Definitions

Solution Concept

One-Deviation Property

> Kuhn's Theorem

Two Extensions Simultaneous

Moves Chance

Definition

An extensive game with simultaneous moves is a tuple $\Gamma = \langle N, H, P, (u_i)_{i \in N} \rangle$, where

- \blacksquare N, H, P and (u_i) are defined as before, and
- $P: H \to 2^N$ assigns to each nonterminal history a set of players to move; for all $h \in H \setminus Z$, there exists a family $(A_i(h))_{i \in P(h)}$ such that

$$A(h) = \{a \mid (h,a) \in H\} = \prod_{i \in P(h)} A_i(h).$$

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two

Simultaneous Moves

Chance

- Intended meaning of simultaneous moves: All players from *P*(*h*) move simultaneously.
- Strategies: Functions $s_i : h \mapsto a_i$ with $a_i \in A_i(h)$.
- Histories: Sequences of vectors of actions.
- Outcome: Terminal history reached when tracing strategy profile.
- Payoffs: Utilities at outcome history.

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two

Extension Simultaneous

Moves Chance

Chance

One-Deviation Property and Kuhn's Theorem

L

Definitions

Solution Concepts

One-Deviation

Kuhn's Theorem

Theore

Extension

Moves

Summary

25

Remark:

- The one-deviation property still holds for extensive game with perfect information and simultaneous moves.
- Kuhn's theorem does not hold for extensive game with simultaneous moves.

Example: MATCHING PENNIES can be viewed as extensive game with simultaneous moves. No Nash equilibrium/subgame-perfect equilibrium.

player 2
$$H T$$

player 1 $H \begin{bmatrix} 1,-1 & -1, & 1 \\ -1, & 1 & 1,-1 \end{bmatrix}$

Need more sophisticated solution concepts (cf. mixed strategies). Not covered in this lecture.

Example: Three-Person Cake Splitting Game

Setting:

- Three players have to split a cake fairly.
- Player 1 suggest split: shares $x_1, x_2, x_3 \in [0, 1]$ s.t. $x_1 + x_2 + x_3 = 1$.
- Then players 2 and 3 simultaneously and independently decide whether to accept ("y") or reject ("n") the suggested splitting.
- If both accept, each player i gets his allotted share (utility x_i). Otherwise, no player gets anything (utility 0).

Motivatio

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Theore

Extension Simultaneous Moves

Chance

Example: Three-Person Cake Splitting Game

Formally:

$$N = \{1, 2, 3\}$$

$$X = \{(x_1, x_2, x_3) \in [0, 1]^3 \mid x_1 + x_2 + x_3 = 1\}$$

$$H = \{\langle \rangle \} \cup \{\langle x \rangle \mid x \in X\} \cup \{\langle x, z \rangle \mid x \in X, z \in \{y, n\} \times \{y, n\}\}$$

$$P(\langle \rangle) = \{1\}$$

$$P(\langle x \rangle) = \{2, 3\} \text{ for all } x \in X$$

$$u_i(\langle x, z \rangle) = \begin{cases} 0 & \text{if } z \in \{(y, n), (n, y), (n, n)\} \\ x_i & \text{if } z = (y, y). \end{cases}$$
 for all $i \in N$

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Theore

Extension

Simultaneous Moves

Chance

Example: Three-Person Cake Splitting Game

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two

Simultaneous Moves

Chance

Summary

Subgame-perfect equilibria:

- Subgames after legal split (x_1, x_2, x_3) by player 1:
 - NE (y,y) (both accept)
 - NE (n,n) (neither accepts)
 - If $x_2 = 0$, NE (n, y) (only player 3 accepts)
 - If $x_3 = 0$, NE (y, n) (only player 2 accepts)

JNI

Subgame-perfect equilibria (ctd.):

Entire game:

Let s_2 and s_3 be any two strategies of players 2 and 3 such that for all splits $x \in X$ the profile $(s_2(\langle x \rangle), s_3(\langle x \rangle))$ is one of the NEs from above.

Let $X_y = \{x \in X \mid s_2(\langle x \rangle) = s_3(\langle x \rangle) = y\}$ be the set of splits accepted under s_2 and s_3 . Distinguish three cases:

- $X_y = \emptyset$ or $x_1 = 0$ for all $x \in X_y$. Then (s_1, s_2, s_3) is a subgame-perfect equilibrium for any possible s_1 .
- $X_y \neq \emptyset$ and there are splits $x_{\max} = (x_1, x_2, x_3) \in X_y$ that maximize $x_1 > 0$. Then (s_1, s_2, s_3) is a subgame-perfect equilibrium if and only if $s_1(\langle \rangle)$ is such a split x_{\max} .
- $X_y \neq \emptyset$ and there are no splits $(x_1, x_2, x_3) \in X_y$ that maximize x_1 . Then there is no subgame-perfect equilibrium, in which player 2 follows strategy s_2 and player 3 follows strategy s_3 .

Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Theorer

Extensions

Moves Chance

ummarv

Definition

An extensive game with chance moves is a tuple

- $\Gamma = \langle N, H, P, f_{\rm C}, (u_i)_{i \in N} \rangle$, where
 - \blacksquare N, A, H and u_i are defined as before.
 - the player function $P: H \setminus Z \rightarrow N \cup \{c\}$ can also take the value c for a chance node, and
 - for each $h \in H \setminus Z$ with P(h) = c, the function $f_c(\cdot | h)$ is a probability distribution on A(h) such that the probability distributions for all $h \in H$ are independent of each other.

One-Property

Kuhn's

Theorem Two

Chance

Chance Moves

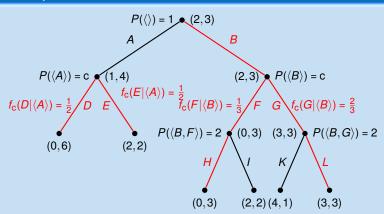
- One-
- Property
- Two
- Chance

- Intended meaning of chance moves: In chance node, an applicable action is chosen randomly with probability according to f_c .
- Strategies: Defined as before.
- Outcome: For a given strategy profile, the outcome is a probability distribution on the set of terminal histories.
- Payoffs: For player i, U_i is the expected payoff (with weights according to outcome probabilities).

Chance Moves

NEN I

Example



Motivation

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two

Simultaneous Moves

Chance

summary

Chance Moves

One-Deviation Property and Kuhn's Theorem

Remark:

The one-deviation property and Kuhn's theorem still hold in the presence of chance moves. When proving Kuhn's theorem, expected utilities have to be used.

Motivation

Definitions

One-Deviation Property

> Kuhn's Theorem

Two

Chance

Motivation

111011141101

Definitions

Solution Concepts

One-Deviation Property

Kuhn's Theorem

Two Extension

Summary

Summary

- For finite-horizon extensive games, it suffices to consider local deviations when looking for better strategies.
- For infinite-horizon games, this is not true in general.
- Every finite extensive game has a subgame-perfect equilibrium.
- This does not generally hold for infinite games, no matter is game is infinite due to infinite branching factor or infinitely long histories (or both).
- With chance moves, one deviation property and Kuhn's theorem still hold.
- With simultaneous moves, Kuhn's theorem no longer holds.

Motivation

Definitions

Solution Concepts

One-Deviation

> Kuhn's Theorem

Two Extensions