1 Motivation
Motivation: We already know some algorithms for finding Nash equilibria in restricted settings from the previous chapter, and upper bounds on their complexity.

- For finite zero-sum games: polynomial-time computation.
- For general finite two player games: computation in NP.

Question: What about lower bounds for those cases and in general?

Approach to an answer: In this chapter, we study the computational complexity of finding Nash equilibria.
Finding Nash Equilibria as a Search Problem

Definition (The problem of computing a Nash equilibrium)

\[\text{\textbf{Nash}} \]

Given: A finite two-player strategic game \(G \).

Find: A mixed-strategy Nash equilibrium \((\alpha, \beta)\) of \(G \).

Remarks:

- No need to add restriction “...if one exists, else ‘fail’”, because existence is guaranteed by Nash’s theorem.
- The corresponding decision problem can be trivially solved in constant time (always return “true”).

Hence, we really need to consider the search problem version instead.
Finding Nash Equilibria as a Search Problem

In this form, Nash looks similar to other search problems, e.g.:

SAT

Given: A propositional formula \(\varphi \) in CNF.

Find: A truth assignment that makes \(\varphi \) true, if one exists, else ‘fail’.

Note: This is the search version of the usual decision problem.
2 Search Problems
A search problem is given by a binary relation $R(x, y)$.

Definition (Search problem)

A search problem is a problem that can be stated in the following form, for a given binary relation $R(x, y)$ over strings:

SEARCH-R

Given: x.

Find: Some y such that $R(x, y)$ holds, if such a y exists, else ‘fail’.
Complexity Classes for Search Problems

Some complexity classes for search problems:

- **FP**: class of search problems that can be solved by a deterministic Turing machine in polynomial time.
- **FNP**: class of search problems that can be solved by a nondeterministic Turing machine in polynomial time.
- **TFNP**: class of search problems in FNP where the relation R is total, i.e., $\forall x \exists y. R(x, y)$.
- **PPAD**: class of search problems that can be polynomially reduced to **End-of-Line**.

(PPAD: Polynomial Parity Argument in Directed Graphs)

To understand **PPAD**, we need to understand what the **End-of-Line** problem is.
The **End-of-Line** Problem

Definition (End-of-Line instance)

Consider a directed graph \(G \) with node set \(\{0, 1\}^n \) such that each node has *in-degree and out-degree at most one* and there are no isolated vertices. The graph \(G \) is specified by two polynomial-time computable functions \(\pi \) and \(\sigma \):

- \(\pi(v) \): returns the *predecessor of* \(v \),
 or \(\bot \) if \(v \) has no predecessor.
- \(\sigma(v) \): returns the *successor of* \(v \),
 or \(\bot \) if \(v \) has no successor.

In \(G \), there is an arc from \(v \) to \(v' \) if and only if \(\sigma(v) = v' \) and \(\pi(v') = v \).
The End-of-Line Problem

Definition (End-of-Line instance (ctd.))

We call a triple \((\pi, \sigma, v)\) consisting of such functions \(\pi\) and \(\sigma\) and a node \(v\) in \(G\) with in-degree zero (a “source”) an End-of-Line instance.

With this, we can define the End-of-Line problem:

Definition (End-of-Line problem)

End-of-Line

Given: An End-of-Line instance \((\pi, \sigma, v)\).

Find: Some node \(v' \neq v\) such that \(v'\) has out-degree zero (a “sink”) or in-degree zero (another “source”).
The *End-of-Line* Problem

Example (*End-of-Line*)

- **given source**
- **sink ≠ v**
- **source ≠ v**
- **sink ≠ v**

```
v
→
v
```

```
v'
→
v'
```

```
v
→
v
```
Comparison of Search Complexity Classes

Relationship of different search complexity classes:

\[FP \subseteq PPAD \subseteq TFNP \subseteq FNP \]

Compare to upper runtime bound that we already know:
Lemke-Howson algorithm has exponential time complexity in the worst case.
3 Complexity Results
Theorem (Daskalakis et al., 2006)

\textbf{Nash} is \textbf{PPAD}-complete.

The same holds for \textit{k-player} instead of just \textit{two-player Nash}. □

Thus, Nash is presumably “simpler” than the Sat search problem, but presumably “harder” than any polynomial search problem.
Another search problem related to Nash equilibria is the problem of **finding a second Nash equilibrium** (given a first one has already been found). As it turns out, this is at least as hard as finding a first Nash equilibrium.

Definition (2ND-Nash problem)

2ND-Nash

Given: A finite two-player game G and a mixed-strategy Nash equilibrium of G.

Find: A second different mixed-strategy Nash equilibrium of G, if one exists, else ‘fail’.

Theorem (Conitzer and Sandholm, 2003)

2ND-Nash *is FNP-complete.*
Some Further Hardness Results

Theorem (Conitzer and Sandholm, 2003)

For each of the following properties \(P^\ell \), \(\ell = 1, 2, 3, 4 \), given a finite two-player game \(G \), it is \(\text{NP} \)-hard to decide whether there exists a mixed-strategy Nash equilibrium \((\alpha, \beta)\) in \(G \) that has property \(P^\ell \).

\(P^1 \) : player 1 (or 2) receives a payoff \(\geq k \) for some given \(k \).
 (“Guaranteed payoff problem”)

\(P^2 \) : \(U_1(\alpha, \beta) + U_2(\alpha, \beta) \geq k \) for some given \(k \).
 (“Guaranteed social welfare problem”)

\(P^3 \) : player 1 (or 2) plays some given action \(a \) with prob. \(> 0 \).

\(P^4 \) : \((\alpha, \beta)\) is Pareto-optimal, i.e., there is no strategy profile \((\alpha', \beta')\) such that
 - \(U_i(\alpha', \beta') \geq U_i(\alpha, \beta) \) for both \(i \in \{1, 2\} \), and
 - \(U_i(\alpha', \beta') > U_i(\alpha, \beta) \) for at least one \(i \in \{1, 2\} \).
4 Summary
Summary

- **PPAD** is the complexity class for which the *End-of-Line* problem is complete.
- Finding a mixed-strategy Nash equilibrium in a finite two-player strategic game is **PPAD-complete**.
- **FNP** is the search-problem equivalent of the class **NP**.
- Finding a second mixed-strategy Nash equilibrium in a finite two-player strategic game is **FNP-complete**.
- Several decision problems related to Nash equilibria are **NP-complete**:
 - guaranteed payoff
 - guaranteed social welfare
 - inclusion in support
 - Pareto-optimality of Nash equilibria