1 Motivation
Motivation: We already know some algorithms for finding Nash equilibria in restricted settings from the previous chapter, and upper bounds on their complexity.

- For finite zero-sum games: polynomial-time computation.
- For general finite two player games: computation in NP.

Question: What about lower bounds for those cases and in general?

Approach to an answer: In this chapter, we study the computational complexity of finding Nash equilibria.
Finding Nash Equilibria as a Search Problem

Definition (The problem of computing a Nash equilibrium)

NASH

Given: A finite two-player strategic game G.

Find: A mixed-strategy Nash equilibrium (α, β) of G.

Remarks:

- No need to add restriction “... if one exists, else ‘fail’”, because existence is guaranteed by Nash’s theorem.
- The corresponding decision problem can be trivially solved in constant time (always return “true”). Hence, we really need to consider the search problem version instead.
Finding Nash Equilibria as a Search Problem

In this form, Nash looks similar to other search problems, e.g.:

SAT

Given: A propositional formula \(\varphi \) in CNF.

Find: A truth assignment that makes \(\varphi \) true, if one exists, else ‘fail’.

Note: This is the search version of the usual decision problem.
2 Search Problems
A search problem is given by a binary relation $R(x, y)$.

Definition (Search problem)

A search problem is a problem that can be stated in the following form, for a given binary relation $R(x, y)$ over strings:

SEARCH-R

- **Given:** x.
- **Find:** Some y such that $R(x, y)$ holds, if such a y exists, else ‘fail’.
Some complexity classes for search problems:

- **FP**: class of search problems that can be solved by a deterministic Turing machine in polynomial time.
- **FNP**: class of search problems that can be solved by a nondeterministic Turing machine in polynomial time.
- **TFNP**: class of search problems in FNP where the relation R is total, i.e., $\forall x \exists y . R(x, y)$.
- **PPAD**: class of search problems that can be polynomially reduced to End-of-Line.
 (PPAD: Polynomial Parity Argument in Directed Graphs)

To understand PPAD, we need to understand what the End-of-Line problem is.
The **End-of-Line Problem**

Definition (End-of-Line instance)

Consider a directed graph G with node set $\{0, 1\}^n$ such that each node has in-degree and out-degree at most one and there are no isolated vertices. The graph G is specified by two polynomial-time computable functions π and σ:

- $\pi(v)$: returns the predecessor of v, or \bot if v has no predecessor.
- $\sigma(v)$: returns the successor of v, or \bot if v has no successor.

In G, there is an arc from v to v' if and only if $\sigma(v) = v'$ and $\pi(v') = v$.

May 7th, 2018 B. Nebel, R. Mattmüller – Game Theory
The End-of-Line Problem

Definition (End-of-Line instance (ctd.))

We call a triple \((\pi, \sigma, v)\) consisting of such functions \(\pi\) and \(\sigma\) and a node \(v\) in \(G\) with in-degree zero (a “source”) an End-of-Line instance.

With this, we can define the End-of-Line problem:

Definition (End-of-Line problem)

End-of-Line

Given: An End-of-Line instance \((\pi, \sigma, v)\).

Find: Some node \(v' \neq v\) such that \(v'\) has out-degree zero (a “sink”) or in-degree zero (another “source”).
The **End-of-Line** Problem

Example (END-OF-LINE)

Given source $v \neq v'$

Source $\neq v$, sink $\neq v$
Comparison of Search Complexity Classes

Relationship of different search complexity classes:

\[FP \subseteq PPAD \subseteq TFNP \subseteq FNP \]

Compare to upper runtime bound that we already know:
Lemke-Howson algorithm has \textbf{exponential} time complexity in the worst case.
3 Complexity Results
Theorem (Daskalakis et al., 2006)

\textit{Nash} is \textit{PPAD}-complete.

\textit{The same holds for \textit{k-player instead of just two-player Nash}}. \hfill \square

Thus, \textit{Nash} is presumably “simpler” than the \textit{Sat} search problem, but presumably “harder” than any polynomial search problem.
Another search problem related to Nash equilibria is the problem of finding a second Nash equilibrium (given a first one has already been found). As it turns out, this is at least as hard as finding a first Nash equilibrium.

Definition (2ND-Nash problem)

2ND-Nash

Given: A finite two-player game G and a mixed-strategy Nash equilibrium of G.

Find: A second different mixed-strategy Nash equilibrium of G, if one exists, else ‘fail’.

Theorem (Conitzer and Sandholm, 2003)

2ND-Nash is FNP-complete.
Some Further Hardness Results

Theorem (Conitzer and Sandholm, 2003)

For each of the following properties P^ℓ, $\ell = 1, 2, 3, 4$, given a finite two-player game G, it is \textbf{NP}-hard to decide whether there exists a mixed-strategy Nash equilibrium (α, β) in G that has property P^ℓ.

P^1: player 1 (or 2) receives a payoff $\geq k$ for some given k.
(“Guaranteed payoff problem”)

P^2: $U_1(\alpha, \beta) + U_2(\alpha, \beta) \geq k$ for some given k.
(“Guaranteed social welfare problem”)

P^3: player 1 (or 2) plays some given action a with prob. > 0.

P^4: (α, β) is Pareto-optimal, i.e., there is no strategy profile (α', β') such that
- $U_i(\alpha', \beta') \geq U_i(\alpha, \beta)$ for both $i \in \{1, 2\}$, and
- $U_i(\alpha', \beta') > U_i(\alpha, \beta)$ for at least one $i \in \{1, 2\}$.

May 7th, 2018 B. Nebel, R. Mattmüller – Game Theory
4 Summary
PPAD is the complexity class for which the **End-of-Line problem** is complete.

Finding a mixed-strategy Nash equilibrium in a finite two-player strategic game is **PPAD-complete**.

FNP is the search-problem equivalent of the class **NP**.

Finding a second mixed-strategy Nash equilibrium in a finite two-player strategic game is **FNP-complete**.

Several decision problems related to Nash equilibria are **NP-complete**:

- guaranteed payoff
- guaranteed social welfare
- inclusion in support
- Pareto-optimality of Nash equilibria