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Motivation

We know: In finite strategic games, mixed-strategy Nash
equilibria are guaranteed to exist.
We don’t know: How to systematically find them?
Challenge: There are infinitely many mixed strategy
profiles to consider. How to do this in finite time?

This chapter:
Computation of mixed-strategy Nash equilibria for
finite zero-sum games.
Computation of mixed-strategy Nash equilibria for
general finite two player games.
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Digression:
We briefly discuss linear programming because we will use
this technique to find Nash equilibria.

Goal of linear programming:
Solving a system of linear inequalities over n real-valued
variables while optimizing some linear objective function.
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Example
Production of two sorts of items with time requirements and
profit per item. Objective: Maximize profit.

Cutting Assembly Postproc. Profit per item
(x) sort 1 25 60 68 30
(y) sort 2 75 60 34 40
per day ≤ 450 ≤ 480 ≤ 476 maximize!

Goal: Find numbers of pieces x of sort 1 and y of sort 2 to be
produced per day such that the resource constraints are met
and the objective function is maximized.

May 2nd, 2018 B. Nebel, R. Mattmüller – Game Theory 8 / 36

Motivation

Linear Pro-
gramming

Zero-Sum
Games

General
Finite
Two-Player
Games

Summary

Linear Programming

Example (ctd., formalization)

x ≥ 0, y ≥ 0 (1)
25x +75y ≤ 450 (or y ≤ 6− 1/3 x) (2)
60x +60y ≤ 480 (or y ≤ 8−x) (3)
68x +34y ≤ 476 (or y ≤ 14−2x) (4)

maximize z = 30x +40y (5)

Inequalities (1)–(4): Admissible solutions
(They form a convex set in R2.)

Line (5): Objective function
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Example (ctd., visualization)

x ≥ 0, y ≥ 0
y ≤ 6− 1/3 x
y ≤ 8−x
y ≤ 14−2x

max z = 30x + 40y

x

y
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0

y = 6− 1/3 x
y = 8−x

y = 14−2x

z = 0

z = 240

z = 210

z = 260

z = 290 ⇒ optimal solution at (3,5)

May 2nd, 2018 B. Nebel, R. Mattmüller – Game Theory 10 / 36



Motivation

Linear Pro-
gramming

Zero-Sum
Games

General
Finite
Two-Player
Games

Summary

Linear Programming

Definition (Linear program)
A linear program (LP) in standard from consists of

n real-valued variables xi ; n coefficients bi ;
m constants cj ; n ·m coefficients aij ;
m constraints of the form

cj ≤
n

∑
i=1

aijxi ,

and an objective function to be minimized (xi ≥ 0)

n

∑
i=1

bixi .
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Solution of an LP:
assignment of values to the xi satisfying the constraints and
minimizing the objective function.

Remarks:
Maximization instead of minimization: easy, just change
the signs of all the bi ’s, i = 1, . . . ,n.
Equalities instead of inequalities: x +y ≤ c if and only if
there is a z ≥ 0 such that x +y +z = c (z is called a slack
variable).
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Solution algorithms:
Usually, one uses the simplex algorithm
(which is worst-case exponential!).
There are also polynomial-time algorithms such as
interior-point or ellipsoid algorithms.

Tools and libraries:
lp_solve
CLP
GLPK
CPLEX
gurobi
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Mixed-Strategy Nash Equilibria in Finite
Zero-Sum Games

We start with finite zero-sum games for two reasons:
They are easier to solve than general finite two-player
games.
Understanding how to solve finite zero-sum games
facilitates understanding how to solve general finite
two-player games.
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Zero-Sum Games

In the following, we will exploit the zero-sum property of a
game G when searching for mixed-strategy Nash equilibria.
For that, we need the following result.

Proposition
Let G be a finite zero-sum game. Then the mixed extension of
G is also a zero-sum game.

Proof.
Homework.
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Mixed-Strategy Nash Equilibria in Finite
Zero-Sum Games

Let G be a finite zero-sum game with mixed extension G′.

Then we know the following:
1 Previous proposition implies: G′ is also a zero-sum game.
2 Nash’s theorem implies: G′ has a Nash equilibrium.
3 Maximinimizer theorem + (1) + (2) implies: Nash equilibria

and pairs of maximinimizers in G′ are the same.
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Mixed-Strategy Nash Equilibria in Finite
Zero-Sum Games

Consequence:
When looking for mixed-strategy Nash equilibria in G, it is
sufficient to look for pairs of maximinimizers in G′.

Method: Linear Programming
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Linear Program Encoding

Approach:
Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 be a finite zero-sum game:

N = {1,2}.
A1 and A2 are finite.
U1(α,β ) =−U2(α,β ) for all α ∈ ∆(A1),β ∈ ∆(A2).

Player 1 looks for a maximinimizer mixed strategy α .
For each possible α of player 1:

Determine expected utility against best response of pl. 2.
(Only need to consider finitely many pure candidates for
best responses because of Support Lemma).
Maximize expected utility over all possible α .
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Linear Program Encoding

Result: maximinimizer α for player 1 in G′
(= Nash equilibrium strategy for player 1)

Analogously: obtain maximinimizer β for player 2 in G′
(= Nash equilibrium strategy for player 2)

With maximinimizer theorem: we can combine α and β

into a Nash equilibrium.
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“For each possible α of player 1, determine expected utility
against best response of player 2, and maximize.”

translates to the following LP:

α(a)≥ 0 for all a ∈ A1

∑
a∈A1

α(a) = 1

U1(α,b) = ∑
a∈A1

α(a) ·u1(a,b)≥ u for all b ∈ A2

Maximize u.
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Linear Program Encoding

Example (Matching pennies)
H T

H 1,−1 −1, 1

T −1, 1 1,−1

Linear program for player 1:
Maximize u subject to the constraints

α(H)≥ 0, α(T )≥ 0, α(H) + α(T ) = 1,
α(H) ·u1(H,H) + α(T ) ·u1(T ,H) = α(H)−α(T )≥ u,

α(H) ·u1(H,T ) + α(T ) ·u1(T ,T ) =−α(H) + α(T )≥ u.

Solution: α(H) = α(T ) = 1/2, u = 0.
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Linear Program Encoding

Remark: There is an alternative encoding based on the
observation that in zero-sum games that have a Nash
equilibrium, maximinimization and minimaximization yield
the same result.
Idea: Formulate linear program with inequalities

U1(a,β )≤ u for all a ∈ A1

and minimize u. Analogously for β .
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4 General Finite Two-Player Games
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General Finite Two-Player Games

For general finite two-player games, the LP approach
does not work.
Instead, use instances of the linear complementarity
problem (LCP):

Linear (in-)equalities as with LPs.
Additional constraints of the form xi ·yi = 0
(or equivalently xi = 0∨yi = 0)
for variables X = {x1, . . . ,xk} and Y = {y1, . . . ,yk}, and
i ∈ {1, . . . ,k}.
no objective function.

With LCPs, we can compute Nash equilibria for arbitrary
finite two-player games.
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General Finite Two-Player Games

Let A1 and A2 be finite and let (α,β ) be a Nash equilibrium
with payoff profile (u,v). Then consider this LCP encoding:

u−U1(a,β )≥ 0 for all a ∈ A1 (6)
v−U2(α,b)≥ 0 for all b ∈ A2 (7)

α(a) · (u−U1(a,β )) = 0 for all a ∈ A1 (8)
β (b) · (v−U2(α,b)) = 0 for all b ∈ A2 (9)

α(a)≥ 0 for all a ∈ A1 (10)

∑
a∈A1

α(a) = 1 (11)

β (b)≥ 0 for all b ∈ A2 (12)

∑
b∈A2

β (b) = 1 (13)
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General Finite Two-Player Games

Remarks about the encoding:
In (8) and (9): for instance,

α(a) · (u−U1(a,β )) = 0

if and only if

α(a) = 0 or u−U1(a,β ) = 0.

This holds in every Nash equilibrium, because:
if a /∈ supp(α), then α(a) = 0, and
if a ∈ supp(α), then a ∈ B1(β ), thus U1(a,β ) = u.

With additional variables, the above LCP formulation can
be transformed into LCP normal form.
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General Finite Two-Player Games

Theorem
A mixed strategy profile (α,β ) with payoff profile (u,v) is a
Nash equilibrium if and only if it is a solution to the LCP
encoding over (α,β ) and (u,v).

Proof.
Nash equilibria are solutions to the LCP: Obvious
because of the support lemma.

Solutions to the LCP are Nash equilibria: Let (α,β ,u,v)
be a solution to the LCP. Because of (10)–(13), α and β

are mixed strategies.
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General Finite Two-Player Games

Proof (ctd.)
Solutions to the LCP are Nash equilibria (ctd.): Because
of (6), u is at least the maximal payoff over all possible
pure responses, and because of (8), u is exactly the
maximal payoff.
If α(a) > 0, then, because of (8), the payoff for player 1
against β is u.
The linearity of the expected utility implies that α is a best
response to β .
Analogously, we can show that β is a best response to α

and hence (α,β ) is a Nash equilibrium with payoff profile
(u,v).
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Solution Algorithm for LCPs

Naïve algorithm:
Enumerate all (2n−1) · (2m−1) possible pairs of support sets.
For each such pair (supp(α),supp(β )):

Convert the LCP into an LP:
Linear (in-)equalities are preserved.
Constraints of the form α(a) · (u−U1(a,β )) = 0 are
replaced by a new linear equality:

u−U1(a,β ) = 0, if a ∈ supp(α), and
α(a) = 0, otherwise,

Analogously for β (b) · (v−U2(α,b)) = 0.
Objective function: maximize constant zero function.

Apply solution algorithm for LPs to the transformed
program.
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Solution Algorithm for LCPs

Runtime of the naïve algorithm: O(p(n+m) ·2n+m), where
p is some polynomial.
Better in practice: Lemke-Howson algorithm.
Complexity:

unknown whether LcpSolve ∈ P.
LcpSolve ∈ NP is clear
(naïve algorithm can be seen as a nondeterministic
polynomial-time algorithm).

May 2nd, 2018 B. Nebel, R. Mattmüller – Game Theory 33 / 36

Motivation

Linear Pro-
gramming

Zero-Sum
Games

General
Finite
Two-Player
Games

Summary

5 Summary
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Summary

Computation of mixed-strategy Nash equilibria for finite
zero-sum games using linear programs.
 polynomial-time computation
Computation of mixed-strategy Nash equilibria for general
finite two player games using linear complementarity
problem.
 computation in NP.

May 2nd, 2018 B. Nebel, R. Mattmüller – Game Theory 36 / 36


	Motivation
	Linear Programming
	Zero-Sum Games
	General Finite Two-Player Games
	Summary

