

Linear Programming

Digression:

We briefly discuss linear programming because we will use this technique to find Nash equilibria.

Goal of linear programming:

Solving a system of linear inequalities over *n* real-valued variables while optimizing some linear objective function.

May 2nd, 2018

Linear Programming

8/36

Motivation

Linear Pro

gramming

Games

Finite

Two-Playe Games

Example

Production of two sorts of items with time requirements and profit per item. Objective: Maximize profit.

	Cutting	Assembly	Postproc.	Profit per item
(x) sort 1	25	60	68	30
(y) sort 2	75	60	34	40
per day	\leq 450	≤ 480	\leq 476	maximize!

Goal: Find numbers of pieces x of sort 1 and y of sort 2 to be produced per day such that the resource constraints are met and the objective function is maximized.

```
May 2nd, 2018
```

B. Nebel, R. Mattmüller - Game Theory

Linear Progr	camming	BURG
Solution of an L assignment of v	P: ralues to the x_i satisfying the con	Motivation Linear Pro- gramming
minimizing the o	objective function.	Zero-Sum Games General
Remarks: Maximization instead of minimization: easy, just change		, just change
the signs o Equalities i	f all the b_i 's, $i = 1,, n$. Instead of inequalities: $x + y \le c$ i	if and only if
there is a z variable).	$z \ge 0$ such that $x + y + z = c$ (z is c	called a slack
		10/00

Mixed-Strategy Nash Equilibria in Zero-Sum Games

Finite		
		Motivation Linear Pro- gramming
o reasons: finite two-playe	r	Zero-Sum Games General Finite Two-Playe
-sum games general finite		Games Summary

We start with finite zero-sum games for two

- They are easier to solve than general f games.
- Understanding how to solve finite zero facilitates understanding how to solve two-player games.

May 2nd, 2018

B. Nebel, R. Mattmüller - Game Theory

16/36

UNI FREIBURG "For each possible α of player 1, determine expected utility Motivation against best response of player 2, and maximize." Linear Pro gramming Zero-Sum translates to the following LP: Games General Finite $\alpha(a) \geq 0$ for all $a \in A_1$ Two-Player $\sum_{a\in A_1}\alpha(a)=1$ Summary $U_1(\alpha,b) = \sum_{a \in A_1} \alpha(a) \cdot u_1(a,b) \ge u \quad \text{ for all } b \in A_2$ Maximize *u*. May 2nd, 2018 B. Nebel, R. Mattmüller - Game Theory 22/36

A General Finite Two-Player Games

General Finite Two-Player G	ames		BURG
Let A_1 and A_2 be finite and let (α, β) be a Nash equilibrium with payoff profile (u, v) . Then consider this LCP encoding:			
$u - U_1(a, \beta) \ge 0$	for all $a \in A_1$	(6)	Linear Pro- gramming
$v-U_2(lpha,b)\geq 0$	for all $b \in A_2$	(7)	Zero-Sum Games
$\alpha(a) \cdot (u - U_1(a, \beta)) = 0$	for all $a \in A_1$	(8)	General Finite
$\beta(b) \cdot (v - U_2(\alpha, b)) = 0$	for all $b \in A_2$	(9)	Two-Player Games
$lpha(a) \geq$ 0	for all $a \in A_1$	(10)	Summary
$\sum_{a\in A_1}\alpha(a)=1$		(11)	
$eta(b)\geq$ 0	for all $b \in A_2$	(12)	
$\sum_{b\in A_2}\beta(b)=1$		(13)	
May 2nd, 2018 B. Nebel, R. Mattmüller – Ga	ame Theory	28 / 36	

General Finite Two-Player Games

Remarks about the encoding:

In (8) and (9): for instance,

$$\alpha(a) \cdot (u - U_1(a, \beta)) = 0$$

if and only if

 $u - U_1(a, \beta) = 0.$ $\alpha(a) = 0$ or

This holds in every Nash equilibrium, because:

- if $a \notin supp(\alpha)$, then $\alpha(a) = 0$, and
- if $a \in supp(\alpha)$, then $a \in B_1(\beta)$, thus $U_1(a,\beta) = u$.
- With additional variables, the above LCP formulation can be transformed into LCP normal form.

May 2nd, 2018

B. Nebel, R. Mattmüller - Game Theory

UNI FREIBURG General Finite Two-Player Games Proof (ctd.) Motivation Solutions to the LCP are Nash equilibria (ctd.): Because Linear Proof (6), *u* is at least the maximal payoff over all possible gramming pure responses, and because of (8), *u* is exactly the maximal payoff. Genera Finite If $\alpha(a) > 0$, then, because of (8), the payoff for player 1 Two-Player Games against β is u. The linearity of the expected utility implies that α is a best response to β . Analogously, we can show that β is a best response to α and hence (α, β) is a Nash equilibrium with payoff profile (u,v).May 2nd, 2018 B. Nebel, R. Mattmüller - Game Theory 31/36

BURG **FREI**

Motivation

Linear Pro

gramming

Games

General

Games

Summary

Two-Player

Finite

Theorem

BURG

Motivation

arammina

Zero-Sum

Games

Genera

Games

Summary

29/36

Two-Player

Finite

A mixed strategy profile (α, β) with payoff profile (u, v) is a Nash equilibrium if and only if it is a solution to the LCP encoding over (α, β) and (u, v).

Proof.

- Nash equilibria are solutions to the LCP: Obvious because of the support lemma.
- Solutions to the LCP are Nash equilibria: Let (α, β, u, v) be a solution to the LCP. Because of (10)–(13), α and β are mixed strategies.

May 2nd, 2018

B. Nebel, R. Mattmüller - Game Theory 30/36 UNI FREIBURG Solution Algorithm for LCPs Naïve algorithm: Motivation Enumerate all $(2^n - 1) \cdot (2^m - 1)$ possible pairs of support sets. Linear Pro gramming For each such pair $(supp(\alpha), supp(\beta))$: Convert the LCP into an LP: Games General Linear (in-)equalities are preserved. Finite Constraints of the form $\alpha(a) \cdot (u - U_1(a, \beta)) = 0$ are Two-Playe Games replaced by a new linear equality: \blacksquare $u - U_1(a, \beta) = 0$, if $a \in supp(\alpha)$, and $\alpha(a) = 0$, otherwise, Analogously for $\beta(b) \cdot (v - U_2(\alpha, b)) = 0$. Objective function: maximize constant zero function. Apply solution algorithm for LPs to the transformed program.

May 2nd, 2018

Solution A	lgorithm for LCPs	EBURG
 Runtime p is some Better in Complex unkr LCPS (naïv poly 	of the naïve algorithm: $O(p(n + m) \cdot e polynomial.$ practice: Lemke-Howson algorithm tity: nown whether LCPSOLVE $\in \mathbf{P}$. SOLVE $\in \mathbf{NP}$ is clear ve algorithm can be seen as a nondete nomial-time algorithm).	2 ^{n+m}), where 2 ^{n+m}), where
May 2nd, 2018	B. Nebel, R. Mattmüller – Game Theory	33 / 36

5 Summary	r	In the second seco
		Motivation
		Linear Pro- gramming
		Zero-Sum Games
		General Finite Two-Player Games
		Summary
May 2nd, 2018	B. Nebel, R. Mattmüller – Game Theory	35 / 36