Game Theory 4. Algorithms

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

May 2nd, 2018

1 Motivation

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

- We know: In finite strategic games, mixed-strategy Nash equilibria are guaranteed to exist.
- We don't know: How to systematically find them?
- Challenge: There are infinitely many mixed strategy profiles to consider. How to do this in finite time?

This chapter:

- Computation of mixed-strategy Nash equilibria for finite zero-sum games.
- Computation of mixed-strategy Nash equilibria for general finite two player games.

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

2 Linear Programming

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Summary

Digression:

We briefly discuss linear programming because we will use this technique to find Nash equilibria.

Goal of linear programming: Solving a system of linear inequalities over *n* real-valued variables while optimizing some linear objective function.

Example

Production of two sorts of items with time requirements and profit per item. Objective: Maximize profit.

	Cutting	Assembly	Postproc.	Profit per item
(x) sort 1	25	60	68	30
(<i>y</i>) sort 2	75	60	34	40
per day	\leq 450	\leq 480	\leq 476	maximize!

Goal: Find numbers of pieces x of sort 1 and y of sort 2 to be produced per day such that the resource constraints are met and the objective function is maximized.

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Example (ctd., formalization)

$$x \ge 0, \ y \ge 0 \tag{1}$$

 $25x + 75y \le 450 \quad \text{(or } y \le 6 - \frac{1}{3}x\text{)} \tag{2}$

$$60x + 60y \le 480$$
 (or $y \le 8 - x$) (3)

$$68x + 34y \le 476 \quad (\text{or } y \le 14 - 2x) \tag{4}$$

maximize z = 30x + 40y

Inequalities (1)–(4): Admissible solutions (They form a convex set in ℝ².)

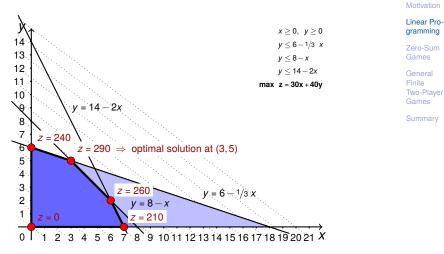
■ Line (5): Objective function

(5)

Motivation Linear Programming

Games

Example (ctd., visualization)



JRG

2

Definition (Linear program)

A linear program (LP) in standard from consists of

- **n** real-valued variables x_i ; *n* coefficients b_i ;
- **m** constants c_i ; $n \cdot m$ coefficients a_{ij} ;
- m constraints of the form

 $c_j \leq \sum_{i=1}^n a_{ij} x_i,$

and an objective function to be minimized ($x_i \ge 0$)

INI REIBURG

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Summary

Solution of an LP:

assignment of values to the x_i satisfying the constraints and minimizing the objective function.

Remarks:

- Maximization instead of minimization: easy, just change the signs of all the b_i's, i = 1,...,n.
- Equalities instead of inequalities: x + y ≤ c if and only if there is a z ≥ 0 such that x + y + z = c (z is called a slack variable).

Solution algorithms:

- Usually, one uses the simplex algorithm (which is worst-case exponential!).
- There are also polynomial-time algorithms such as interior-point or ellipsoid algorithms.

Tools and libraries:

- Ip_solve
- CLP
- GLPK
- CPLEX
- gurobi

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

3 Zero-Sum Games

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

We start with finite zero-sum games for two reasons:

- They are easier to solve than general finite two-player games.
- Understanding how to solve finite zero-sum games facilitates understanding how to solve general finite two-player games.

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

In the following, we will exploit the zero-sum property of a game G when searching for mixed-strategy Nash equilibria. For that, we need the following result.

Proposition

Let G be a finite zero-sum game. Then the mixed extension of G is also a zero-sum game.

Proof.

Homework.

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Let G be a finite zero-sum game with mixed extension G'.

Then we know the following:

- **1** Previous proposition implies: G' is also a zero-sum game.
- 2 Nash's theorem implies: G' has a Nash equilibrium.
- 3 Maximinimizer theorem + (1) + (2) implies: Nash equilibria and pairs of maximinimizers in G' are the same.

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Summary

Consequence: When looking for mixed-strategy Nash equilibria in G, it is sufficient to look for pairs of maximinimizers in G'.

Method: Linear Programming

Approach:

- Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a finite zero-sum game: $N = \{1, 2\}.$
 - A_1 and A_2 are finite.
 - $\quad \quad = U_1(\alpha,\beta) = -U_2(\alpha,\beta) \text{ for all } \alpha \in \Delta(A_1), \beta \in \Delta(A_2).$
- Player 1 looks for a maximinimizer mixed strategy α.
- For each possible α of player 1:
 - Determine expected utility against best response of pl. 2. (Only need to consider finitely many pure candidates for best responses because of Support Lemma).
 - Maximize expected utility over all possible α .

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

- Result: maximinimizer α for player 1 in G' (= Nash equilibrium strategy for player 1)
- Analogously: obtain maximinimizer β for player 2 in G'
 (= Nash equilibrium strategy for player 2)
- With maximinimizer theorem: we can combine α and β into a Nash equilibrium.

"For each possible α of player 1, determine expected utility against best response of player 2, and maximize."

translates to the following LP:

$$\alpha(a) \ge 0 \quad \text{ for all } a \in A_1$$

$$\sum_{a \in A_1} \alpha(a) = 1$$

$$U_1(\alpha, b) = \sum_{a \in A_1} \alpha(a) \cdot u_1(a, b) \ge u \quad \text{ for all } b \in A_2$$
Maximize u .

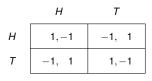
Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Example (Matching pennies)



Linear program for player 1:

Maximize *u* subject to the constraints

$$\begin{split} \alpha(H) \geq 0, \ \alpha(T) \geq 0, \ \alpha(H) + \alpha(T) = 1, \\ \alpha(H) \cdot u_1(H, H) + \alpha(T) \cdot u_1(T, H) = \alpha(H) - \alpha(T) \geq u, \\ \alpha(H) \cdot u_1(H, T) + \alpha(T) \cdot u_1(T, T) = -\alpha(H) + \alpha(T) \geq u. \end{split}$$

Solution: $\alpha(H) = \alpha(T) = 1/2$, u = 0.

May 2nd, 2018

B. Nebel, R. Mattmüller - Game Theory

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

- Remark: There is an alternative encoding based on the observation that in zero-sum games that have a Nash equilibrium, maximinimization and minimaximization yield the same result.
- Idea: Formulate linear program with inequalities

 $U_1(a,\beta) \leq u$ for all $a \in A_1$

and minimize u. Analogously for β .

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

4 General Finite Two-Player Games

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

- For general finite two-player games, the LP approach does not work.
- Instead, use instances of the linear complementarity problem (LCP):
 - Linear (in-)equalities as with LPs.
 - Additional constraints of the form $x_i \cdot y_i = 0$ (or equivalently $x_i = 0 \lor y_i = 0$) for variables $X = \{x_1, \dots, x_k\}$ and $Y = \{y_1, \dots, y_k\}$, and $i \in \{1, \dots, k\}$.
 - no objective function.
- With LCPs, we can compute Nash equilibria for arbitrary finite two-player games.

B. Nebel, R. Mattmüller – Game Theory

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Let A_1 and A_2 be finite and let (α, β) be a Nash equilibrium with payoff profile (u, v). Then consider this LCP encoding:

- $u U_1(a,\beta) \ge 0$ for all $a \in A_1$ (6)
- $v U_2(\alpha, b) \ge 0$ for all $b \in A_2$ (7)
- $\alpha(a) \cdot (u U_1(a, \beta)) = 0 \quad \text{for all } a \in A_1 \tag{8}$

$$\beta(b) \cdot (v - U_2(\alpha, b)) = 0 \quad \text{for all } b \in A_2 \tag{9}$$

$$\alpha(a) \ge 0 \quad \text{for all } a \in A_1 \tag{10}$$

$$\sum_{a \in A_1} \alpha(a) = 1 \tag{11}$$

 $eta(b) \geq 0$ for all $b \in A_2$ (12)

$$\sum_{b \in A_2} \beta(b) = 1 \tag{13}$$

Motivation

Linear Programming

Zero-Sum Games

```
General
Finite
Two-Player
Games
```

Remarks about the encoding:

■ In (8) and (9): for instance,

$$\alpha(a)\cdot(u-U_1(a,\beta))=0$$

if and only if

$$\alpha(a) = 0$$
 or $u - U_1(a, \beta) = 0$.

This holds in every Nash equilibrium, because:

if
$$a \notin supp(\alpha)$$
, then $\alpha(a) = 0$, and

if $a \in supp(\alpha)$, then $a \in B_1(\beta)$, thus $U_1(a,\beta) = u$.

With additional variables, the above LCP formulation can be transformed into LCP normal form.

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Theorem

A mixed strategy profile (α, β) with payoff profile (u, v) is a Nash equilibrium if and only if it is a solution to the LCP encoding over (α, β) and (u, v).

Proof.

- Nash equilibria are solutions to the LCP: Obvious because of the support lemma.
- Solutions to the LCP are Nash equilibria: Let (α, β, u, v) be a solution to the LCP. Because of (10)–(13), α and β are mixed strategies.

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Proof (ctd.)

- Solutions to the LCP are Nash equilibria (ctd.): Because of (6), u is at least the maximal payoff over all possible pure responses, and because of (8), u is exactly the maximal payoff.
 - If $\alpha(a) > 0$, then, because of (8), the payoff for player 1 against β is *u*.
 - The linearity of the expected utility implies that α is a best response to β .
 - Analogously, we can show that β is a best response to α and hence (α, β) is a Nash equilibrium with payoff profile (u, v).

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Naïve algorithm:

Enumerate all $(2^n - 1) \cdot (2^m - 1)$ possible pairs of support sets.

For each such pair $(supp(\alpha), supp(\beta))$:

- Convert the LCP into an LP:
 - Linear (in-)equalities are preserved.
 - Constraints of the form $\alpha(a) \cdot (u U_1(a, \beta)) = 0$ are replaced by a new linear equality:

$$u - U_1(a, \beta) = 0$$
, if $a \in supp(\alpha)$, and

 $\alpha(a) = 0$, otherwise,

Analogously for $\beta(b) \cdot (v - U_2(\alpha, b)) = 0$.

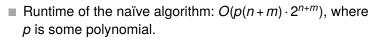
- Objective function: maximize constant zero function.
- Apply solution algorithm for LPs to the transformed program.

Motivatio

Linear Programming

Zero-Sum Games

General Finite Two-Player Games



- Better in practice: Lemke-Howson algorithm.
- Complexity:
 - unknown whether $LcpSolve \in \mathbf{P}$.
 - LCPSOLVE ∈ NP is clear (naïve algorithm can be seen as a nondeterministic polynomial-time algorithm).

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

5 Summary

Motivation

Linear Programming

Zero-Sum Games

General Finite Two-Player Games

Motivation

Linear Programming

- Zero-Sum Games
- General Finite Two-Player Games

- Computation of mixed-strategy Nash equilibria for finite zero-sum games using linear programs. ~> polynomial-time computation
- Computation of mixed-strategy Nash equilibria for general finite two player games using linear complementarity problem.
 - \rightsquigarrow computation in NP.