Game Theory

3. Mixed Strategies

Bernhard Nebel and Robert Mattmüller

April 25, 2018
1 Mixed Strategies

- Definitions
- Support Lemma
Observation: Not every strategic game has a pure-strategy Nash equilibrium (e.g. matching pennies).

Question:
- Can we do anything about that?
- Which strategy to play then?

Idea: Consider randomized strategies.
Mixed Strategies

Notation

Let X be a set.

Then $\Delta(X)$ denotes the set of probability distributions over X.

That is, each $p \in \Delta(X)$ is a mapping $p : X \to [0, 1]$ with

$$\sum_{x \in X} p(x) = 1.$$
Mixed Strategies

A mixed strategy is a strategy where a player is allowed to randomize his action (throw a dice mentally and then act according to what he has decided to do for each outcome).

Definition (Mixed strategy)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

A mixed strategy of player i in G is a probability distribution $\alpha_i \in \Delta(A_i)$ over player i’s actions.

For $a_i \in A_i$, $\alpha_i(a_i)$ is the probability for playing a_i.

Terminology: When we talk about strategies in A_i specifically, to distinguish them from mixed strategies, we sometimes also call them pure strategies.
Definition (Mixed strategy profile)

A profile $\alpha = (\alpha_i)_{i \in N} \in \prod_{i \in N} \Delta(A_i)$ of mixed strategies induces a probability distribution p_α over $A = \prod_{i \in N} A_i$ as follows:

$$p_\alpha(a) = \prod_{i \in N} \alpha_i(a_i).$$

For $A' \subseteq A$, we define

$$p_\alpha(A') = \sum_{a \in A'} p_\alpha(a) = \sum_{a \in A'} \prod_{i \in N} \alpha_i(a_i).$$
Mixed Strategies

Notation

Since each pure strategy \(a_i \in A_i \) is equivalent to its induced mixed strategy \(\hat{a}_i \)

\[
\hat{a}_i(a'_i) = \begin{cases}
1 & \text{if } a'_i = a_i \\
0 & \text{otherwise,}
\end{cases}
\]

we sometimes abuse notation and write \(a_i \) instead of \(\hat{a}_i \).
Mixed Strategies

Example (Mixed strategies for matching pennies)

\[\begin{array}{c|cc}
 & H & T \\
\hline
H & 1, -1 & -1, 1 \\
T & -1, 1 & 1, -1 \\
\end{array} \]

\[\alpha = (\alpha_1, \alpha_2), \quad \alpha_1(H) = \frac{2}{3}, \quad \alpha_1(T) = \frac{1}{3}, \quad \alpha_2(H) = \frac{1}{3}, \quad \alpha_2(T) = \frac{2}{3}. \]

This induces a probability distribution over \(\{H, T\} \times \{H, T\} \):

\[p_\alpha(H, H) = \alpha_1(H) \cdot \alpha_2(H) = \frac{2}{9}, \quad u_1(H, H) = +1, \]
\[p_\alpha(H, T) = \alpha_1(H) \cdot \alpha_2(T) = \frac{4}{9}, \quad u_1(H, T) = -1, \]
\[p_\alpha(T, H) = \alpha_1(T) \cdot \alpha_2(H) = \frac{1}{9}, \quad u_1(T, H) = -1, \]
\[p_\alpha(T, T) = \alpha_1(T) \cdot \alpha_2(T) = \frac{2}{9}, \quad u_1(T, T) = +1. \]
Expected Utility

Definition (Expected utility)
Let \(\alpha \in \prod_{i \in N} \Delta(A_i) \) be a mixed strategy profile. The expected utility of \(\alpha \) for player \(i \) is

\[
U_i(\alpha) = U_i((\alpha_j)_{j \in N}) := \sum_{a \in A} p_\alpha(a) \ u_i(a) = \sum_{a \in A} \left(\prod_{j \in N} \alpha_j(a_j) \right) u_i(a).
\]

Example (Mixed strategies for matching pennies (ctd.))
The expected utilities for player 1 and player 2 are

\[
U_1(\alpha_1, \alpha_2) = -\frac{1}{9} \quad \text{and} \quad U_2(\alpha_1, \alpha_2) = \frac{1}{9}.
\]
Expected Utility

Remark: The expected utility functions U_i are linear in all mixed strategies.

Proposition

Let $\alpha \in \prod_{i \in N} \Delta(A_i)$ be a mixed strategy profile, $\beta_i, \gamma_i \in \Delta(A_i)$ mixed strategies, and $\lambda \in [0,1]$. Then

$$U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda) \gamma_i) = \lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda) U_i(\alpha_{-i}, \gamma_i).$$

Moreover,

$$U_i(\alpha) = \sum_{a_i \in A_i} \alpha_i(a_i) \cdot U_i(\alpha_{-i}, a_i)$$

Proof.

Homework.
Definition (Mixed extension)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

The **mixed extension** of G is the game $\langle N, (\Delta(A_i))_{i \in N}, (U_i)_{i \in N} \rangle$ where

- $\Delta(A_i)$ is the set of probability distributions over A_i and
- $U_i : \prod_{j \in N} \Delta(A_j) \to \mathbb{R}$ assigns to each mixed strategy profile α the expected utility for player i according to the induced probability distribution p_α.

Definition (Nash equilibrium in mixed strategies)

Let G be a strategic game.

A Nash equilibrium in mixed strategies (or mixed-strategy Nash equilibrium) of G is a Nash equilibrium in the mixed extension of G.
Intuition:

- It does not make sense to assign positive probability to a pure strategy that is not a best response to what the other players do.
- **Claim:** A profile of mixed strategies α is a Nash equilibrium if and only if everyone only plays best pure responses to what the others play.

Definition (Support)

Let α_i be a mixed strategy. The **support** of α_i is the set

$$supp(\alpha_i) = \{a_i \in A_i \mid \alpha_i(a_i) > 0\}$$

of actions played with nonzero probability.
Support Lemma

Lemma (Support lemma)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a finite strategic game.

Then $\alpha^* \in \prod_{i \in N} \Delta(A_i)$ is a mixed-strategy Nash equilibrium in G if and only if for every player $i \in N$, every pure strategy in the support of α^*_i is a best response to α^*_{-i}.

For a single player—given all other players stick to their mixed strategies—it does not make a difference whether he plays the mixed strategy or whether he plays any single pure strategy from the support of the mixed strategy.
Example (Support lemma)

Matching pennies, strategy profile $\alpha = (\alpha_1, \alpha_2)$ with

$$\alpha_1(H) = \frac{2}{3}, \quad \alpha_1(T) = \frac{1}{3}, \quad \alpha_2(H) = \frac{1}{3}, \quad \text{and} \quad \alpha_2(T) = \frac{2}{3}.$$

For α to be a Nash equilibrium, both actions in $\text{supp}(\alpha_2) = \{H, T\}$ have to be best responses to α_1. Are they?

$$U_2(\alpha_1, H) = \alpha_1(H) \cdot u_2(H, H) + \alpha_1(T) \cdot u_2(T, H)$$
$$= \frac{2}{3} \cdot (-1) + \frac{1}{3} \cdot (+1) = -\frac{1}{3},$$

$$U_2(\alpha_1, T) = \alpha_1(H) \cdot u_2(H, T) + \alpha_1(T) \cdot u_2(T, T)$$
$$= \frac{2}{3} \cdot (+1) + \frac{1}{3} \cdot (-1) = \frac{1}{3}.$$

$H \in \text{supp}(\alpha_2)$, but $H \notin B_2(\alpha_1)$.

Support lemma $\Rightarrow \alpha$ can not be a Nash equilibrium.
Support Lemma

Proof.

“⇒”: Let α^* be a Nash equilibrium with $a_i \in \text{supp}(\alpha_i^*)$. Assume that a_i is not a best response to α_{-i}^*. Because U_i is linear, player i can improve his utility by shifting probability in α_i^* from a_i to a better response. This makes the modified α_i^* a better response than the original α_i^*, i.e., the original α_i^* was not a best response, which contradicts the assumption that α^* is a Nash equilibrium.
Support Lemma

Proof (ctd.)

“⇐”: Assume that α^* is not a Nash equilibrium.

Then there must be a player $i \in N$ and a strategy α'_i such that

$U_i(\alpha^*_{-i}, \alpha'_i) > U_i(\alpha^*_{-i}, \alpha^*_i)$.

Because U_i is linear, there must be a pure strategy $a'_i \in supp(\alpha'_i)$ that has higher utility than some pure strategy $a''_i \in supp(\alpha^*_i)$.

Therefore, $supp(\alpha^*_i)$ does not only contain best responses to α^*_{-i}.

\square
Computing Mixed-Strategy Nash Equilibria

Example (Mixed-strategy Nash equilibria in BoS)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>S</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

We already know: \((B, B)\) and \((S, S)\) are pure Nash equilibria. Possible supports (excluding “pure-vs-pure” strategies) are:

\[
\{B\} \text{ vs. } \{B, S\}, \quad \{S\} \text{ vs. } \{B, S\}, \quad \{B, S\} \text{ vs. } \{B\}, \quad \{B, S\} \text{ vs. } \{S\} \quad \text{and} \quad \{B, S\} \text{ vs. } \{B, S\}
\]

Observation: In Bach or Stravinsky, pure strategies have unique best responses. Therefore, there can be no Nash equilibria of “pure-vs-strictly-mixed” type.
Computing Mixed-Strategy Nash Equilibria

Example (Mixed-strategy Nash equilibria in BoS (ctd.))

Consequence: Only need to search for additional Nash equilibria with support sets \{B, S\} vs. \{B, S\}.

Assume that \((\alpha_1^*, \alpha_2^*)\) is a Nash equilibrium with \(0 < \alpha_1^*(B) < 1\) and \(0 < \alpha_2^*(B) < 1\). Then

\[
U_1(B, \alpha_2^*) = U_1(S, \alpha_2^*)
\]

\[
\Rightarrow 2 \cdot \alpha_2^*(B) + 0 \cdot \alpha_2^*(S) = 0 \cdot \alpha_2^*(B) + 1 \cdot \alpha_2^*(S)
\]

\[
\Rightarrow 2 \cdot \alpha_2^*(B) = 1 - \alpha_2^*(B)
\]

\[
\Rightarrow 3 \cdot \alpha_2^*(B) = 1
\]

\[
\Rightarrow \alpha_2^*(B) = \frac{1}{3} \quad \text{(and } \alpha_2^*(S) = \frac{2}{3})
\]

Similarly, we get \(\alpha_1^*(B) = \frac{2}{3}\) and \(\alpha_1^*(S) = \frac{1}{3}\).

The payoff profile of this equilibrium is \((\frac{2}{3}, \frac{2}{3})\).
Support Lemma

Remark

Let $G = \langle \{1, 2\}, (A_i), (u_i) \rangle$ with $A_1 = \{T, B\}$ and $A_2 = \{L, R\}$ be a two-player game with two actions each, and (T, α_2^*) with $0 < \alpha_2^*(L) < 1$ be a Nash equilibrium of G.

Then at least one of the profiles (T, L) and (T, R) is also a Nash equilibrium of G.

Reason: Both L and R are best responses to T. Assume that T was neither a best response to L nor to R. Then B would be a better response than T both to L and to R.

With the linearity of U_1, B would also be a better response to α_2^* than T is. Contradiction.
Support Lemma

Example

Consider the Nash equilibrium $\alpha^* = (\alpha_1^*, \alpha_2^*)$ with

$$\alpha_1^*(T) = 1, \quad \alpha_1^*(B) = 0, \quad \alpha_2^*(L) = 1/10, \quad \alpha_2^*(R) = 9/10$$

in the following game:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1, 1</td>
<td>1, 1</td>
</tr>
<tr>
<td>B</td>
<td>2, 2</td>
<td>−5, −5</td>
</tr>
</tbody>
</table>

Here, (T, R) is also a Nash equilibrium.
2 Nash’s Theorem

- Definitions
- Kakutani’s Fixpoint Theorem
- Proof of Nash’s Theorem
Motivation: When does a strategic game have a mixed-strategy Nash equilibrium?

In the previous chapter, we discussed necessary and sufficient conditions for the existence of Nash equilibria for the special case of zero-sum games. Can we make other claims?
Theorem (Nash’s theorem)

Every finite strategic game has a mixed-strategy Nash equilibrium.

Proof sketch.

Consider the set-valued function of best responses

\[B : \mathbb{R}^{\sum_i |A_i|} \rightarrow 2^{\mathbb{R}^{\sum_i |A_i|}} \]

with

\[B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i}) \]

A mixed strategy profile \(\alpha \) is a fixed point of \(B \) if and only if \(\alpha \in B(\alpha) \) if and only if \(\alpha \) is a mixed-strategy Nash equilibrium.

The graph of \(B \) has to be connected. Then there is at least one point on the fixpoint diagonal.
Nash’s Theorem

Outline for the formal proof:

1. Review of necessary mathematical definitions
 ⇔ Subsection “Definitions”

2. Statement of a fixpoint theorem used to prove Nash’s theorem (without proof)
 ⇔ Subsection “Kakutani’s Fixpoint Theorem”

3. Proof of Nash’s theorem using fixpoint theorem
 ⇔ Subsection “Proof of Nash’s Theorem”
Nash’s Theorem
Definitions

Definition

A set \(X \subseteq \mathbb{R}^n \) is closed if \(X \) contains all its limit points, i.e., if \((x_k)_{k\in\mathbb{N}}\) is a sequence of elements in \(X \) and \(\lim_{k \to \infty} x_k = x \), then also \(x \in X \).

Example

Closed:

Not closed:
Nash’s Theorem

Definitions

Definition

A set $X \subseteq \mathbb{R}^n$ is **bounded** if for each $i = 1, \ldots, n$ there are lower and upper bounds $a_i, b_i \in \mathbb{R}$ such that

$$X \subseteq \prod_{i=1}^{n} [a_i, b_i].$$

Example

Bounded:

![Bounded example](image1)

Not bounded:

![Not bounded example](image2)
Nash’s Theorem

Definitions

Definition
A set $X \subseteq \mathbb{R}^n$ is convex if for all $x, y \in X$ and all $\lambda \in [0, 1],$

$$\lambda x + (1 - \lambda)y \in X.$$

Example
Convex:

Not convex:
Nash’s Theorem

Definitions

Definition

For a function $f : X \rightarrow 2^X$, the graph of f is the set

$$\text{Graph}(f) = \{(x, y) \mid x \in X, y \in f(x)\}.$$
Theorem (Kakutani’s fixpoint theorem)

Let \(X \subseteq \mathbb{R}^n \) be a nonempty, closed, bounded and convex set and let \(f : X \rightarrow 2^X \) be a function such that

- for all \(x \in X \), the set \(f(x) \subseteq X \) is nonempty and convex, and
- \(\text{Graph}(f) \) is closed.

Then there is an \(x \in X \) with \(x \in f(x) \), i.e., \(f \) has a fixpoint.

Proof.

See Shizuo Kakutani, A generalization of Brouwer’s fixed point theorem, 1941, or your favorite advanced calculus textbook, or the Internet.

For German speakers: Harro Heuser, Lehrbuch der Analysis, Teil 2, also has a proof (Abschnitt 232).
Nash’s Theorem
Kakutani’s Fixpoint Theorem

Example
Let $X = [0, 1]$.

Kakutani’s theorem applicable:

Kakutani’s theorem not applicable:
Proof.

Apply Kakutani’s fixpoint theorem using \(X = \mathcal{A} = \prod_{i \in N} \Delta(A_i) \) and \(f = B \), where \(B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i}) \).

We have to show:

1. \(\mathcal{A} \) is nonempty,
2. \(\mathcal{A} \) is closed,
3. \(\mathcal{A} \) is bounded,
4. \(\mathcal{A} \) is convex,
5. \(B(\alpha) \) is nonempty for all \(\alpha \in \mathcal{A} \),
6. \(B(\alpha) \) is convex for all \(\alpha \in \mathcal{A} \), and
7. \(\text{Graph}(B) \) is closed.
Nash’s Theorem

Proof

Proof (ctd.)

Some notation:

■ Assume without loss of generality that \(N = \{1, \ldots, n\} \).

■ A profile of mixed strategies can be written as a vector of \(M = \sum_{i \in N} |A_i| \) real numbers in the interval \([0, 1]\) such that numbers for the same player add up to 1.

For example, \(\alpha = (\alpha_1, \alpha_2) \) with \(\alpha_1(T) = 0.7, \alpha_1(M) = 0.0, \alpha_1(B) = 0.3, \alpha_2(L) = 0.4, \alpha_2(R) = 0.6 \) can be seen as the vector

\[
\begin{pmatrix}
0.7, & 0.0, & 0.3, & 0.4, & 0.6 \\
\alpha_1, & \alpha_2
\end{pmatrix}
\]

■ This allows us to interpret the set \(\mathcal{A} \) of mixed strategy profiles as a subset of \(\mathbb{R}^M \).
Proof (ctd.)

1. \(\mathcal{A} \) nonempty: Trivial. \(\mathcal{A} \) contains the tuple

\[
(1, 0, \ldots, 0, \ldots, 1, 0, \ldots, 0),
\]

where \(|A_1| - 1 \) times \(\ldots \), where \(|A_n| - 1 \) times.

2. \(\mathcal{A} \) closed: Let \(\alpha_1, \alpha_2, \ldots \) be a sequence in \(\mathcal{A} \) that converges to \(\lim_{k \to \infty} \alpha_k = \alpha \). Suppose \(\alpha \notin \mathcal{A} \). Then either there is some component of \(\alpha \) that is less than zero or greater than one, or the components for some player \(i \) add up to a value other than one.

Since \(\alpha \) is a limit point, the same must hold for some \(\alpha_k \) in the sequence. But then, \(\alpha_k \notin \mathcal{A} \), a contradiction. Hence \(\mathcal{A} \) is closed.
Proof (ctd.)

3. \(\mathcal{A} \) bounded: Trivial. All entries are between 0 and 1, i.e., \(\mathcal{A} \) is bounded by \([0, 1]^M\).

4. \(\mathcal{A} \) convex: Let \(\alpha, \beta \in \mathcal{A} \) and \(\lambda \in [0, 1] \), and consider \(\gamma = \lambda \alpha + (1 - \lambda) \beta \). Then

\[
\min(\gamma) = \min(\lambda \alpha + (1 - \lambda) \beta) \\
\geq \lambda \cdot \min(\alpha) + (1 - \lambda) \cdot \min(\beta) \\
\geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0,
\]

and similarly, \(\max(\gamma) \leq 1 \).

Hence, all entries in \(\gamma \) are still in \([0, 1]\).
Proof (ctd.)

4. \(\mathcal{A} \) convex (ctd.): Let \(\tilde{\alpha}, \tilde{\beta} \) and \(\tilde{\gamma} \) be the sections of \(\alpha, \beta \) and \(\gamma \), respectively, that determine the probability distribution for player \(i \). Then

\[
\sum \tilde{\gamma} = \sum (\lambda \tilde{\alpha} + (1 - \lambda) \tilde{\beta}) \\
= \lambda \cdot \sum \tilde{\alpha} + (1 - \lambda) \cdot \sum \tilde{\beta} \\
= \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1.
\]

Hence, all probabilities for player \(i \) in \(\gamma \) still sum up to 1. Altogether, \(\gamma \in \mathcal{A} \), and therefore, \(\mathcal{A} \) is convex.
Proof (ctd.)

5. \(B(\alpha) \) nonempty: For a fixed \(\alpha_{-i} \), \(U_i \) is linear in the mixed strategies of player \(i \), i.e., for \(\beta_i, \gamma_i \in \Delta(A_i) \),

\[
U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda) \gamma_i) = \lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda) U_i(\alpha_{-i}, \gamma_i)
\]

for all \(\lambda \in [0,1] \).

Hence, \(U_i \) is continuous on \(\Delta(A_i) \).

Continuous functions on closed and bounded sets take their maximum in that set.

Therefore, \(B_i(\alpha_{-i}) \neq \emptyset \) for all \(i \in N \), and thus \(B(\alpha) \neq \emptyset \).
Proof (ctd.)

6 \(B(\alpha) \) convex: This follows, since each \(B_i(\alpha_{-i}) \) is convex.

To see this, let \(\alpha'_i, \alpha''_i \in B_i(\alpha_{-i}) \).

Then \(U_i(\alpha_{-i}, \alpha'_i) = U_i(\alpha_{-i}, \alpha''_i) \).

With Equation (1), this implies

\[
\lambda \alpha'_i + (1 - \lambda) \alpha''_i \in B_i(\alpha_{-i}).
\]

Hence, \(B_i(\alpha_{-i}) \) is convex.

7 Graph\((B)\) closed: Let \((\alpha^k, \beta^k) \) be a convergent sequence in Graph\((B)\) with \(\lim_{k \to \infty} (\alpha^k, \beta^k) = (\alpha, \beta) \).

So, \(\alpha^k, \beta^k, \alpha, \beta \in \prod_{i \in N} \Delta(A_i) \) and \(\beta^k \in B(\alpha^k) \).

We need to show that \((\alpha, \beta) \in \text{Graph}(B) \), i.e., that \(\beta \in B(\alpha) \).
Proof (ctd.)

Graph(B) closed (ctd.): It holds for all \(i \in N \):

\[
U_i(\alpha_{-i}, \beta_i) \overset{(D)}{=} U_i\left(\lim_{k \to \infty} (\alpha^k_{-i}, \beta^k_i) \right)
\]

\[
\overset{(C)}{=} \lim_{k \to \infty} U_i(\alpha^k_{-i}, \beta^k_i)
\]

\[
\overset{(B)}{\geq} \lim_{k \to \infty} U_i(\alpha^k_{-i}, \beta'_i) \quad \text{for all } \beta'_i \in \Delta(A_i)
\]

\[
\overset{(C)}{=} U_i\left(\lim_{k \to \infty} \alpha^k_{-i}, \beta'_i \right) \quad \text{for all } \beta'_i \in \Delta(A_i)
\]

\[
\overset{(D)}{=} U_i(\alpha_{-i}, \beta'_i) \quad \text{for all } \beta'_i \in \Delta(A_i).
\]

(D): def. \(\alpha_i, \beta_i \); (C) continuity; (B) \(\beta^k_i \) best response to \(\alpha^k_{-i} \).
Nash’s Theorem
Proof

Proof (ctd.)

7. **Graph**(B) closed (ctd.): It follows that \(\beta_i \) is a best response to \(\alpha_{-i} \) for all \(i \in N \).

Thus, \(\beta \in B(\alpha) \) and finally \((\alpha, \beta) \in \text{Graph}(B) \).

Therefore, all requirements of Kakutani’s fixpoint theorem are satisfied.

Applying Kakutani’s theorem establishes the existence of a fixpoint of \(B \), which is, by definition/construction, the same as a mixed-strategy Nash equilibrium.

\[\square \]
3 Correlated Equilibria
Correlated Equilibria

Recall: There are three Nash equilibria in Bach or Stravinsky

- \((B, B)\) with payoff profile \((2,1)\)
- \((S, S)\) with payoff profile \((1,2)\)
- \((\alpha_1^*, \alpha_2^*)\) with payoff profile \((2/3, 2/3)\) where
 - \(\alpha_1^*(B) = 2/3, \alpha_1^*(S) = 1/3,\)
 - \(\alpha_2^*(B) = 1/3, \alpha_2^*(S) = 2/3.\)

Idea: Use a publicly visible coin toss to decide which action from a mixed strategy is played. This can lead to higher payoffs.
Correlated Equilibria

Example (Correlated equilibrium in BoS)

With a fair coin that both players can observe, the players can agree to play as follows:

- If the coin shows heads, both play B.
- If the coin shows tails, both play S.

This is stable in the sense that no player has an incentive to deviate from this agreed-upon rule, as long as the other player keeps playing his/her strategy (cf. definition of Nash equilibria).

Expected payoffs: $(3/2, 3/2)$ instead of $(2/3, 2/3)$.
Observations and Information Partitions

We assume that observations are made based on a finite probability space (Ω, π), where Ω is a set of states and π is a probability measure on Ω.

Agents might not be able to distinguish all states from each other. In order to model this, we assume for each player i an information partition $P_i = \{P_{i1}, P_{i2}, \ldots, P_{ik}\}$. This means that $\bigcup_{j=1}^{ik} P_j = \Omega$ and for all $P_i, P_k \in P_i$ with $P_j \neq P_k$, we have $P_j \cap P_k = \emptyset$.

Example: $\Omega = \{x, y, z\}$, $P_1 = \{\{x\}, \{y, z\}\}$, $P_2 = \{\{x, y\}, \{z\}\}$.

We say that a function $f : \Omega \rightarrow X$ respects an information partition for player i if $f(\omega) = f(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in P_i$.

Example: f respects P_1 if $f(y) = f(z)$.
Definition

A correlated equilibrium of a strategic game \(\langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle \) consists of

- a finite probability space \((\Omega, \pi)\),
- for each player \(i \in N\) an information partition \(\mathcal{P}_i\) of \(\Omega\),
- for each player \(i \in N\) a function \(\sigma_i : \Omega \rightarrow A_i\) that respects \(\mathcal{P}_i\) (\(\sigma_i\) is player \(i\)'s strategy)

such that for every \(i \in N\) and every function \(\tau_i : \Omega \rightarrow A_i\) that respects \(\mathcal{P}_i\) (i.e. for every possible strategy of player \(i\)) we have

\[
\sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \sigma_i(\omega)) \geq \sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \tau_i(\omega)). \quad (2)
\]
Equilibria: \((T, R)\) with \((2, 7)\), \((B, L)\) with \((7, 2)\), and mixed \(((\frac{2}{3}, \frac{1}{3}), (\frac{2}{3}, \frac{1}{3}))\) with \((4\frac{2}{3}, 4\frac{2}{3})\).

Assume \(\Omega = \{x, y, z\}\), \(\pi(x) = \frac{1}{3}\), \(\pi(y) = \frac{1}{3}\), \(\pi(z) = \frac{1}{3}\).
Assume further \(P_1 = \{\{x\}, \{y, z\}\}\), \(P_2 = \{\{x, y\}, \{z\}\}\).
Set \(\sigma_1(x) = B, \sigma_1(y) = \sigma_1(z) = T\) and \(\sigma_2(x) = \sigma_2(y) = L, \sigma_2(z) = R\).

Then both player play optimally and get a payoff profile of \((5, 5)\).
Connection to Nash Equilibria

Proposition

For every mixed strategy Nash equilibrium α of a finite strategic game $\langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$, there is a correlated equilibrium $\langle (\Omega, \pi), (P_i), (\sigma_i) \rangle$ in which for each player i the distribution on A_i induced by σ_i is α_i.

This means that correlated equilibria are a generalization of Nash equilibria.
Proof

Let $\Omega = A$ and define $\pi(a) = \prod_{j \in N} \alpha_j(a_j)$. For each player i, let $a \in P$ and $b \in P$ for $P \in \mathcal{P}_i$ if $a_i = b_i$. Define $\sigma_i(a) = a_i$ for each $a \in A$.

Then $\langle (\Omega, \pi), (\mathcal{P}_i), (\sigma_i) \rangle$ is a correlated equilibrium since the left hand side of (2) is the Nash equilibrium payoff and for each player i at least as good any other strategy τ_i respecting the information partition. Further, the distribution induced by σ_i is α_i. \qed
Proposition

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game. Any convex combination of correlated equilibrium payoff profiles of G is a correlated equilibrium payoff profile of G.

Proof idea: From given equilibria and weighting factors, create a new one by combining them orthogonally, using the weighting factors.
Proof

Let u^1, \ldots, u^K be the payoff profiles and let $(\lambda^1, \ldots, \lambda^K) \in \mathbb{R}^K$ with $\lambda^l \geq 0$ and $\sum_{l=1}^K \lambda^l = 1$. For each l let $\langle (\Omega^l, \pi^l), (\mathcal{P}^l_i), (\sigma^l_i) \rangle$ be a correlated equilibrium generating payoff u^l. Wlog. assume all Ω^l’s are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where l is such that $\omega \in \Omega^l$. For each $i \in N$ let $\mathcal{P}_i = \bigcup_l \mathcal{P}^l_i$ and set $\sigma_i(\omega) = \sigma^l_i(\omega)$ where l is such that $\omega \in \Omega^l$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.
4 Summary

Mixed Strategies
Nash's Theorem
Correlated Equilibria

Summary
Summary

- **Mixed strategies** allow randomization.
- **Characterization** of mixed-strategy Nash equilibria: players only play best responses with positive probability (support lemma).
- **Nash’s Theorem**: Every finite strategic game has a mixed-strategy Nash equilibrium.
- **Correlated equilibria** can lead to higher payoffs.
- All Nash equilibria are correlated equilibria, but not *vice versa*.