Introduction to Game Theory

B. Nebel, R. MattmüllerT. Schulte, D. BergdollSummer semester 2018

University of Freiburg Department of Computer Science

Exercise Sheet 6 Due: Monday, June 4, 2018

Exercise 6.1 (Uniqueness of SPE, 2+2 points)

Let Γ be an extensive two-player game with s^* and r^* being subgame perfect equilibria of Γ . Show (for $i \in N$):

- (a) If Γ is a ZSG, then $u_i(O(s^*)) = u_i(O(r^*))$.
- (b) For general extensive games, $u_i(O(s^*)) = u_i(O(r^*))$ is not necessarily true.

Exercise 6.2 (Extensive Games, 2 + 1 + 1 points)

The owner of a retail chain R operates stores in K cities. In each city $k, 1 \leq k \leq K$, there is a potential competitor C_k who can decide to open up a store (O_k) or to stay out of business $(\neg O_k)$. If competitor C_k opens a store, R can either start a price war (P_k) or ignore the competitor $(\neg P_k)$. The competitors make their decisions sequentially, i.e. when C_k makes its decision, C_1, \ldots, C_{k-1} have already made their decisions and C_k is aware of their choice and the reactions of R. In every city k competitor C_k gets payoff 0 if he chooses to stay out of business, payoff 2 if he opens a store and R is not starting a price war, and payoff -2 if he opens a store and R starts a price war. The retail chain owner R gets a payoff of 3K if no competitor opens a store. For every competitor opening a store R's payoff is reduced by 2. For every price war R decides to start the payoff is additionally reduced by 1. Regard the special case of K = 2.

- (a) Model this situation as an extensive game with perfect information and specify the game tree.
- (b) Specify each players set of strategies.
- (c) Determine a subgame perfect equilibrium.

The exercise sheets may and should be worked on and handed in in groups of three students. Please indicate all names on your solution.